AiryAi - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

AiryAi, AiryBi

The Airy Ai and Bi wave functions

 Calling Sequence AiryAi(x) AiryBi(x) AiryAi(n, x) AiryBi(n, x)

Parameters

 n - algebraic expression (the order or index) x - algebraic expression (the argument)

Description

 • The Airy wave functions AiryAi and AiryBi are linearly independent solutions for w in the equation $w\text{'}\text{'}-zw=0$. Specifically,

$\mathrm{AiryAi}\left(z\right)={c}_{1}{}_{0}F_{1}\left(;\frac{2}{3};\frac{{z}^{3}}{9}\right)-{c}_{2}z{}_{0}F_{1}\left(;\frac{4}{3};\frac{{z}^{3}}{9}\right)$

$\mathrm{AiryBi}\left(z\right)={3}^{\frac{1}{2}}\left[{c}_{1}{}_{0}F_{1}\left(;\frac{2}{3};\frac{{z}^{3}}{9}\right)+{c}_{2}z{}_{0}F_{1}\left(;\frac{4}{3};\frac{{z}^{3}}{9}\right)\right]$

 where ${}_{0}F_{1}$ is the generalized hypergeometric function, ${c}_{1}=\mathrm{AiryAi}\left(0\right)$ and ${c}_{2}=-\mathrm{AiryAi}'\left(0\right)$.
 • The two argument forms are used to represent the derivatives, so AiryAi(1, x) = D(AiryAi)(x) and AiryBi(1, x) = D(AiryBi)(x). Note that all higher derivatives can be written in terms of the 0'th and 1st derivatives.
 Note also that $\mathrm{AiryAi}\left(3,{x}^{2}\right)$ is the 3rd derivative of $\mathrm{AiryAi}\left(x\right)$ evaluated at ${x}^{2}$, and not the 3rd derivative of $\mathrm{AiryAi}\left({x}^{2}\right)$.
 • The Airy functions are related to Bessel functions of order $\frac{n}{3}$ for $n=-2,-1,1,2$ (see the examples below).

Examples

 > $\mathrm{AiryAi}\left(0\right)$
 $\frac{{{3}}^{{1}}{{3}}}}{{3}{}{\mathrm{\Gamma }}{}\left(\frac{{2}}{{3}}\right)}$ (1)
 > $\mathrm{AiryBi}\left(0\right)$
 $\frac{{{3}}^{{5}}{{6}}}}{{3}{}{\mathrm{\Gamma }}{}\left(\frac{{2}}{{3}}\right)}$ (2)
 > $\mathrm{AiryAi}\left(1.23\right)$
 ${0.1021992656}$ (3)
 > $\mathrm{AiryBi}\left(-3.45+2.75I\right)$
 ${-16.85910551}{-}{32.61659997}{}{I}$ (4)
 > $\mathrm{AiryAi}\left(1,x\right)$
 ${\mathrm{AiryAi}}{}\left({1}{,}{x}\right)$ (5)
 > $\mathrm{AiryBi}\left(2,x\right)$
 ${\mathrm{AiryBi}}{}\left({2}{,}{x}\right)$ (6)
 > $\mathrm{convert}\left(\mathrm{AiryAi}\left(x\right),\mathrm{Bessel}\right)$
 ${-}\frac{{x}{}{\mathrm{BesselI}}{}\left(\frac{{1}}{{3}}{,}\frac{{2}{}\sqrt{{{x}}^{{3}}}}{{3}}\right)}{{3}{}{\left({{x}}^{{3}}\right)}^{{1}}{{6}}}}{+}\frac{{\left({{x}}^{{3}}\right)}^{{1}}{{6}}}{}{\mathrm{BesselI}}{}\left({-}\frac{{1}}{{3}}{,}\frac{{2}{}\sqrt{{{x}}^{{3}}}}{{3}}\right)}{{3}}$ (7)
 > $\mathrm{convert}\left(\mathrm{AiryBi}\left(1,x\right),\mathrm{Bessel}\right)$
 $\frac{\sqrt{{3}}{}\left({{x}}^{{2}}{}{\mathrm{BesselI}}{}\left(\frac{{2}}{{3}}{,}\frac{{2}{}\sqrt{{{x}}^{{3}}}}{{3}}\right){+}{\left({{x}}^{{3}}\right)}^{{2}}{{3}}}{}{\mathrm{BesselI}}{}\left({-}\frac{{2}}{{3}}{,}\frac{{2}{}\sqrt{{{x}}^{{3}}}}{{3}}\right)\right)}{{3}{}{\left({{x}}^{{3}}\right)}^{{1}}{{3}}}}$ (8)
 > $\frac{ⅆ}{ⅆx}\mathrm{AiryAi}\left(\mathrm{sin}\left(x\right)\right)$
 ${\mathrm{cos}}{}\left({x}\right){}{\mathrm{AiryAi}}{}\left({1}{,}{\mathrm{sin}}{}\left({x}\right)\right)$ (9)
 > $\frac{\partial }{\partial x}\mathrm{AiryBi}\left(n,x\right)$
 ${\mathrm{AiryBi}}{}\left({n}{+}{1}{,}{x}\right)$ (10)
 > ${\mathrm{D}}^{\left(5\right)}\left(\mathrm{AiryBi}\right)$
 ${z}{↦}{4}{\cdot }{z}{\cdot }{\mathrm{AiryBi}}{}\left({z}\right){+}{{z}}^{{2}}{\cdot }{\mathrm{AiryBi}}{}\left({1}{,}{z}\right)$ (11)
 > $\mathrm{series}\left(\mathrm{AiryAi}\left(x\right),x,4\right)$
 $\frac{{{3}}^{{1}}{{3}}}}{{3}{}{\mathrm{\Gamma }}{}\left(\frac{{2}}{{3}}\right)}{-}\frac{{1}}{{2}}{}\frac{{{3}}^{{1}}{{6}}}{}{\mathrm{\Gamma }}{}\left(\frac{{2}}{{3}}\right)}{{\mathrm{\pi }}}{}{x}{+}\frac{{1}}{{18}}{}\frac{{{3}}^{{1}}{{3}}}}{{\mathrm{\Gamma }}{}\left(\frac{{2}}{{3}}\right)}{}{{x}}^{{3}}{+}{O}{}\left({{x}}^{{4}}\right)$ (12)