OrbitDimension - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


OrbitDimension

calculate the dimension of the orbit distribution of a LAVF object

InvariantCount

calculate the count of invariant of a LAVF object

IsTransitive

check if a LAVF object is transitive.

 

Calling Sequence

Parameters

Description

Examples

Compatibility

Calling Sequence

OrbitDimension( obj)

InvariantCount( obj, t)

IsTransitive( obj)

Parameters

obj

-

a LAVF object

t

-

(optional) a string: "all", "essential", or "inessential"

Description

• 

The OrbitDimension method calculates the dimension of the orbit distribution of a LAVF object.

• 

The InvariantCount method calculates the count of scalar invariants of a LAVF object. By default (t="all"), all invariants are counted.

• 

If t="essential" is specified, then only essential invariants are counted. An invariant is essential, roughly speaking, if the group action cannot be expressed without it.

• 

Let L be a LAVF object. Then IsTransitive(L) returns true if and only if the action of L is transitive, that is, InvariantCount(L) = 0.

• 

Let L be a LAVF object and let OD be the orbit distribution of L. Then OrbitDimension(L) equals to Dimension(OD) and InvariantCount(L) equals to Codimension(OD). See Overview of the Distribution object for more detail.

• 

These methods are associated with the LAVF object. For more detail, see Overview of the LAVF object.

Examples

withLieAlgebrasOfVectorFields:

Typesetting:-Settingsuserep=true:

Typesetting:-Suppressξx,y,z,ηx,y,z,ζx,y,z:

Example 1: Build vector fields associated with 3-d spatial rotations...

RxVectorFieldzDy+yDz,space=x,y,z

Rxzⅆⅆy+yⅆⅆz

(1)

RyVectorFieldxDz+zDx,space=x,y,z

Ryzⅆⅆxxⅆⅆz

(2)

RzVectorFieldyDx+xDy,space=x,y,z

Rzyⅆⅆx+xⅆⅆy

(3)

We now construct a LAVF object for SO(3) that are generated by these rotation vector fields.

VVectorFieldξx,y,zDx+ηx,y,zDy+ζx,y,zDz,space=x,y,z

Vξⅆⅆx+ηⅆⅆy+ζⅆⅆz

(4)

LEliminationLAVFV,Rx,Ry,Rz

Lξⅆⅆx+ηⅆⅆy+ζⅆⅆz&whereξ=ηyζzx,ηx=ζyz+ηx,ηy=0,ηz=ζy,ζy,y=0,ζx=ζyy+ζx,ζz=0

(5)

OrbitDimensionL

2

(6)

InvariantCountL

1

(7)

L is not transitive since SO(3) has one invariant.

IsTransitiveL

false

(8)

InvariantsL

x2+y2+z2

(9)

Example 2:

YVectorFieldayDx+bzDx,space=x,y,z

Yay+bzⅆⅆx

(10)

L2EliminationLAVFV,Y,coefficients=a,b

L2ξⅆⅆx+ηⅆⅆy+ζⅆⅆz&whereξz,z=0,ξx=0,ξy=ξzz+ξy,η=0,ζ=0

(11)

OrbitDimensionL2

1

(12)

IsTransitiveL2

false

(13)

InvariantCountL2

2

(14)

InvariantCountL2,essential

1

(15)

InvariantCountL2,inessential

1

(16)

The counts above are found directly from L2. Finding invariants involve integration...

InvariantsL2

y,z

(17)

InvariantsL2,essential

zy

(18)

Compatibility

• 

The OrbitDimension, InvariantCount and IsTransitive commands were introduced in Maple 2020.

• 

For more information on Maple 2020 changes, see Updates in Maple 2020.

See Also

LieAlgebrasOfVectorFields (Package overview)

LAVF (Object overview)

Distribution (Object overview)

LieAlgebrasOfVectorFields[VectorField]

LieAlgebrasOfVectorFields[EliminationLAVF]

Invariants

 


Download Help Document