Zeta - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


Zeta

The Riemann Zeta function; the Hurwitz Zeta function

 

Calling Sequence

Parameters

Description

Examples

References

Calling Sequence

Zeta(z)

ζz

Zeta(n, z)

ζnz

Zeta(n, z, v)

ζnz,v

Parameters

n

-

algebraic expression; understood to be a non-negative integer

z

-

algebraic expression

v

-

algebraic expression; understood not to be a non-positive integer

Description

• 

The Zeta function (zeta function) is defined for Re(z)>1 by

ζz=i=11iz

  

and is extended to the rest of the complex plane (except for the point z=1) by analytic continuation.  The point z=1 is a simple pole.

• 

The call Zeta(n, z) gives the nth derivative of the Zeta function,

ζnz=ⅆnⅆznζz

• 

You can enter the command Zeta using either the 1-D calling sequence or in 2-D using command completion.

• 

The optional third parameter v changes the expression of summation to 1/(i+v)^z, so that for Re(z)>1,

ζnz,v=nzni=01i+vz

  

and, again, this is extended to the complex plane less the point 1 by analytic continuation.  The point z=1 is a simple pole for the function Zeta(0, z, v).

  

The third parameter, v, can be any complex number which is not a non-positive integer.

• 

The function Zeta(0, z, v) is often called the Hurwitz Zeta function or the Generalized Zeta function.

Examples

ζ2.2

1.490543257

(1)

evalfζ1.5+3.5I,30

0.232434139233841813873124398558+0.173728378830616590886617515292I

(2)

ζ112

ζ12γ2+ln8π2+π4

(3)

ζ02,12

π22

(4)

ζ02,s

Ψ1,s

(5)

ζ31.5+0.3I,0.2

70.20062910+64.74329586I

(6)

ζ31.2+35.3I,0.2+I

−2.383200150×1021+1.841204211×1021I

(7)

sum1i7,i=1..

ζ7

(8)

The following plot shows a plot of the Zeta function along the critical line for real values of t from 0 to 34.

plots:-complexplotζ0.5+tI,t=0..34,scaling=constrained,numpoints=300,labels=Re,Im

References

  

Erdelyi, A. Higher Transcendental Functions. McGraw-Hill, 1953. Vol. 1.

See Also

initialfunctions

JacobiZeta

MultiZeta

PolynomialTools[Hurwitz]