stirling2 - Maple Help

Stirling2

computes the Stirling numbers of the second kind

 Calling Sequence Stirling2(n, m) combinat[stirling2](n, m)

Parameters

 n, m - integers

Description

 • The Stirling2(n,m) command computes the Stirling numbers of the second kind from the well-known formula in terms of the binomial coefficients.

$\mathrm{Stirling2}\left(n,m\right)=\sum _{k=0}^{m}\frac{\left(\genfrac{}{}{0}{}{m}{k}\right){k}^{n}}{m!{\left(-1\right)}^{k-m}}$

 Instead of Stirling2 you can also use the synonym combinat[stirling2].
 • Regarding combinatorial functions, $\mathrm{Stirling2}\left(n,m\right)$ is the number of ways of partitioning a set of n elements into m non-empty subsets. The Stirling numbers also enter binomial series, Mathieu function formulas, and are relevant in applications in Physics.

Examples

Stirling2 only evaluates to a number when $m$ and $n$ are positive integers

 > $\mathrm{Stirling2}\left(n,m\right)$
 ${\mathrm{Stirling2}}{}\left({n}{,}{m}\right)$ (1)
 > $=\mathrm{convert}\left(,\mathrm{Sum}\right)$
 ${\mathrm{Stirling2}}{}\left({n}{,}{m}\right){=}{\sum }_{{\mathrm{_k1}}{=}{0}}^{{m}}{}\frac{\left(\genfrac{}{}{0}{}{{m}}{{\mathrm{_k1}}}\right){}{{\mathrm{_k1}}}^{{n}}}{{m}{!}{}{\left({-1}\right)}^{{-}{m}{+}{\mathrm{_k1}}}}$ (2)
 > $\mathrm{eval}\left(,\left[n=10,m=5\right]\right)$
 ${42525}{=}{\sum }_{{\mathrm{_k1}}{=}{0}}^{{5}}{}\frac{\left(\genfrac{}{}{0}{}{{5}}{{\mathrm{_k1}}}\right){}{{\mathrm{_k1}}}^{{10}}}{{120}{}{\left({-1}\right)}^{{-}{5}{+}{\mathrm{_k1}}}}$ (3)
 > $\mathrm{value}\left(\right)$
 ${42525}{=}{42525}$ (4)