Get Constants - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

ScientificConstants

 GetConstants
 list the full names or symbols of all physical constants

 Calling Sequence GetConstants( 'names', 'derivedfrom'=Const )

Parameters

 'names' - (optional); specify that the full names be returned Const - (optional) symbol; return physical constants that are derived from Const

Description

 • The GetConstants() command returns an expression sequence containing the symbols of the physical constants in the ScientificConstants package.
 • The GetConstants( 'names' ) command returns an expression sequence containing the full names of the physical constants in the ScientificConstants package.
 • The GetConstants( 'derivedfrom'=Const ) command returns an expression sequence containing the symbols of the physical constants that are directly derived from the constant of name or symbol Const.
 • The GetConstants( 'names', 'derivedfrom'=Const ) command returns an expression sequence containing the full names of the physical constants that are directly derived from the constant of name or symbol Const.
 • The sequence of names or symbols is sorted alphabetically.

Examples

 > $\mathrm{with}\left(\mathrm{ScientificConstants}\right):$
 > $\mathrm{GetConstants}\left(\right)$
 ${\mathrm{A\left[r\right]\left(alpha\right)}}{,}{\mathrm{A\left[r\right]\left(d\right)}}{,}{\mathrm{A\left[r\right]\left(e\right)}}{,}{\mathrm{A\left[r\right]\left(h\right)}}{,}{\mathrm{A\left[r\right]\left(n\right)}}{,}{\mathrm{A\left[r\right]\left(p\right)}}{,}{{E}}_{{h}}{,}{F}{,}{G}{,}{{G}}_{{0}}{,}{{K}}_{{J}}{,}{{M}}_{{\mathrm{Earth}}}{,}{{M}}_{{\mathrm{Sun}}}{,}{{M}}_{{u}}{,}{{N}}_{{A}}{,}{{\mathrm{\Phi }}}_{{0}}{,}{R}{,}{{R}}_{{\mathrm{Earth}}}{,}{{R}}_{{K}}{,}{{R}}_{{\mathrm{\infty }}}{,}{{V}}_{{m}}{,}{{Z}}_{{0}}{,}{{a}}_{{0}}{,}{{a}}_{{e}}{,}{{a}}_{{\mathrm{\mu }}}{,}{\mathrm{\alpha }}{,}{b}{,}{c}{,}{{c}}_{{1}{,}{L}}{,}{{c}}_{{1}}{,}{{c}}_{{2}}{,}{e}{,}{{\mathrm{\epsilon }}}_{{0}}{,}{g}{,}{{g}}_{{e}}{,}{{g}}_{{\mathrm{\mu }}}{,}{{g}}_{{n}}{,}{{g}}_{{p}}{,}{{\mathrm{\gamma }}}_{{e}}{,}{{\mathrm{\gamma }}}_{{n}}{,}{{\mathrm{\gamma }}}_{{p}}{,}{{\mathrm{gamma_prime}}}_{{h}}{,}{{\mathrm{gamma_prime}}}_{{p}}{,}{h}{,}{\mathrm{ℏ}}{,}{k}{,}{{l}}_{{P}}{,}{{\mathrm{\lambda }}}_{{C}{,}{\mathrm{\mu }}}{,}{{\mathrm{\lambda }}}_{{C}{,}{n}}{,}{{\mathrm{\lambda }}}_{{C}{,}{p}}{,}{{\mathrm{\lambda }}}_{{C}{,}{\mathrm{\tau }}}{,}{{\mathrm{\lambda }}}_{{C}}{,}{{m}}_{{P}}{,}{{m}}_{{\mathrm{\alpha }}}{,}{{m}}_{{d}}{,}{{m}}_{{e}}{,}{\mathrm{m\left[e\right]/m\left[mu\right]}}{,}{{m}}_{{h}}{,}{{m}}_{{\mathrm{\mu }}}{,}{{m}}_{{n}}{,}{{m}}_{{p}}{,}{{m}}_{{\mathrm{\tau }}}{,}{\mathrm{m\left[tau\right]c^2}}{,}{{m}}_{{u}}{,}{{\mathrm{\mu }}}_{{0}}{,}{{\mathrm{\mu }}}_{{B}}{,}{{\mathrm{\mu }}}_{{N}}{,}{{\mathrm{\mu }}}_{{d}}{,}{\mathrm{mu\left[d\right]/mu\left[e\right]}}{,}{{\mathrm{\mu }}}_{{e}}{,}{\mathrm{mu\left[e\right]/mu\left[p\right]}}{,}{\mathrm{mu\left[e\right]/mu_prime\left[p\right]}}{,}{{\mathrm{\mu }}}_{{\mathrm{\mu }}}{,}{{\mathrm{\mu }}}_{{n}}{,}{\mathrm{mu\left[n\right]/mu_prime\left[p\right]}}{,}{{\mathrm{\mu }}}_{{p}}{,}{{\mathrm{mu_prime}}}_{{h}}{,}{\mathrm{mu_prime\left[h\right]/mu_prime\left[p\right]}}{,}{{\mathrm{mu_prime}}}_{{p}}{,}{{n}}_{{0}}{,}{{r}}_{{e}}{,}{\mathrm{\sigma }}{,}{{\mathrm{\sigma }}}_{{e}}{,}{{\mathrm{sigma_prime}}}_{{p}}{,}{{t}}_{{P}}$ (1)
 > $\mathrm{GetConstants}\left(\mathrm{names},\mathrm{derivedfrom}=G\right)$
 ${\mathrm{Planck_length}}{,}{\mathrm{Planck_mass}}{,}{\mathrm{Planck_time}}$ (2)