 IsomorphicCopy - Maple Help

GraphTheory

 PermuteVertices
 create copy of graph with permuted vertices
 IsomorphicCopy
 create isomorphic copy of graph Calling Sequence PermuteVertices(G, sigma) IsomorphicCopy(G, sigma) Parameters

 G - graph sigma - (optional) a (permuted) list of the vertices of G Description

 • The calling sequence PermuteVertices('G','sigma') returns a new graph H with Vertices(H) = sigma.  The list of neighbors data structure is reordered according to sigma so that the adjacency matrix of H will be different in general.  Attribute information, including vertex position information is also permuted according to sigma so that DrawGraph(H) will look identical to DrawGraph(G).
 • The calling sequence IsomorphicCopy('G','sigma') returns a new graph H where the list of neighbors data structure is reordered according to sigma but the vertex labels of H are the same as G. It also discards all attributes from G so that if H is drawn, it will not be obvious that H is isomorphic to G.
 • The calling sequence PermuteVertices('G') chooses a random permutation sigma of the vertices of G then returns H = PermuteVertices(G,sigma). Hence Vertices(H) is the permutation used.
 • The calling sequence IsomorphicCopy('G') chooses a random permutation sigma of the vertices of G and returns IsomorphicCopy('G','sigma'). Examples

 > $\mathrm{with}\left(\mathrm{GraphTheory}\right):$
 > $\mathrm{with}\left(\mathrm{SpecialGraphs}\right):$
 > $G≔\mathrm{PathGraph}\left(5\right)$
 ${G}{≔}{\mathrm{Graph 1: an undirected unweighted graph with 5 vertices and 4 edge\left(s\right)}}$ (1)
 > $\mathrm{Vertices}\left(G\right),\mathrm{Neighbors}\left(G\right)$
 $\left[{1}{,}{2}{,}{3}{,}{4}{,}{5}\right]{,}\left[\left[{2}\right]{,}\left[{1}{,}{3}\right]{,}\left[{2}{,}{4}\right]{,}\left[{3}{,}{5}\right]{,}\left[{4}\right]\right]$ (2)
 > $H≔\mathrm{PermuteVertices}\left(G,\left[3,5,1,2,4\right]\right)$
 ${H}{≔}{\mathrm{Graph 2: an undirected unweighted graph with 5 vertices and 4 edge\left(s\right)}}$ (3)
 > $\mathrm{Vertices}\left(H\right)$
 $\left[{3}{,}{5}{,}{1}{,}{2}{,}{4}\right]$ (4)
 > $\mathrm{Neighbors}\left(H\right)$
 $\left[\left[{2}{,}{4}\right]{,}\left[{4}\right]{,}\left[{2}\right]{,}\left[{3}{,}{1}\right]{,}\left[{3}{,}{5}\right]\right]$ (5)
 > $H≔\mathrm{IsomorphicCopy}\left(G,\left[3,5,1,2,4\right]\right)$
 ${H}{≔}{\mathrm{Graph 3: an undirected unweighted graph with 5 vertices and 4 edge\left(s\right)}}$ (6)
 > $\mathrm{Vertices}\left(H\right),\mathrm{Neighbors}\left(H\right)$
 $\left[{1}{,}{2}{,}{3}{,}{4}{,}{5}\right]{,}\left[\left[{4}{,}{5}\right]{,}\left[{5}\right]{,}\left[{4}\right]{,}\left[{1}{,}{3}\right]{,}\left[{1}{,}{2}\right]\right]$ (7)
 > $H≔\mathrm{PermuteVertices}\left(G\right)$
 ${H}{≔}{\mathrm{Graph 4: an undirected unweighted graph with 5 vertices and 4 edge\left(s\right)}}$ (8)
 > $\mathrm{\sigma }≔\mathrm{Vertices}\left(H\right)$
 ${\mathrm{\sigma }}{≔}\left[{3}{,}{4}{,}{5}{,}{1}{,}{2}\right]$ (9)
 > $P≔\mathrm{PrismGraph}\left(3,3\right)$
 ${P}{≔}{\mathrm{Graph 5: an undirected unweighted graph with 6 vertices and 9 edge\left(s\right)}}$ (10)
 > $H≔\mathrm{IsomorphicCopy}\left(P,\left[4,1,2,6,5,3\right]\right)$
 ${H}{≔}{\mathrm{Graph 6: an undirected unweighted graph with 6 vertices and 9 edge\left(s\right)}}$ (11)
 > $\mathrm{DrawGraph}\left(P\right)$ > $\mathrm{DrawGraph}\left(H,\mathrm{style}=\mathrm{spring}\right)$ 