 analytic_extension - Maple Help

return the definition of the analytic extension of a given mathematical function Calling Sequence FunctionAdvisor(analytic_extension, math_function) Parameters

 analytic_extension - literal name; 'analytic_extension' math_function - Maple name of mathematical function Description

 • The FunctionAdvisor(analytic_extension, math_function) command returns the definition of the analytic extension used by Maple to extend the function outside the classical domain, typically to the entire complex plane.
 Note: For most functions the domain of the classical definition is the entire complex plane. If the requested information is not available, the FunctionAdvisor command returns NULL. Examples

 > $\mathrm{FunctionAdvisor}\left(\mathrm{definition},\mathrm{\Gamma }\left(z\right)\right)$
 $\left[{\mathrm{\Gamma }}{}\left({z}\right){=}{{\int }}_{{0}}^{{\mathrm{\infty }}}\frac{{{\mathrm{_k1}}}^{{z}{-}{1}}}{{{ⅇ}}^{{\mathrm{_k1}}}}\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}{ⅆ}{\mathrm{_k1}}{,}{0}{<}{\mathrm{\Re }}{}\left({z}\right)\right]$ (1)
 > $\mathrm{FunctionAdvisor}\left(\mathrm{analytic_extension},\mathrm{\Gamma }\right)$
 ${\mathrm{\Gamma }}{}\left({z}\right){=}\frac{{\mathrm{\pi }}}{{\mathrm{sin}}{}\left({\mathrm{\pi }}{}{z}\right){}{\mathrm{\Gamma }}{}\left({1}{-}{z}\right)}{,}{\mathrm{\Re }}{}\left({z}\right){<}{0}$ (2)