>
|
|
Example 1.
First create a 3 dimensional manifold and define a metric on the tangent space of .
>
|
|
M >
|
|
| (2.2) |
Calculate the curvature tensor for the metric .
M >
|
|
| (2.3) |
Example 2.
First create a 3 dimensional manifold and define a connection on the tangent space of .
M >
|
|
M >
|
|
| (2.5) |
M >
|
|
| (2.6) |
Here are two simple procedures we shall use for checking the Bianchi identities.
>
|
|
>
|
|
>
|
|
>
|
|
>
|
|
>
|
|
>
|
|
>
|
|
Use the above programs to check the Bianchi identities.
Example 3.
Define a frame on and use this frame to specify a connection on the tangent space of .
M >
|
|
M >
|
|
M1 >
|
|
| (2.11) |
M1 >
|
|
| (2.12) |
Use the above programs to check the Bianchi identities.
M1 >
|
|
| (2.13) |
M1 >
|
|
| (2.14) |
Example 4.
First create a rank 3 vector bundle and define a connection on .
M1 >
|
|
E >
|
|
E >
|
|
| (2.17) |