SimpleLieAlgebraData - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


LieAlgebras[SimpleLieAlgebraData] - obtain the structure equations for a classical matrix Lie algebra

Calling Sequences

     SimpleLieAlgebraData(algtype, algname, option)

Parameters

     algtype   - a string, describing the type and dimension of a classical matrix algebra

algname   - an unassigned name or a string, the name of the classical matrix algebra to be constructed

     options   - (optional) keyword arguments labelformat, labels which specify the labelling of the basis for the Lie algebra. Different standard basis for some of the Lie algebras can be specified with the keyword version.

 

Description

Examples

Description

 This command returns the structure equations (see LieAlgebraData) for any one of the following Lie algebras:

 

 Type

Lie algebra

A

 (two versions),

B

(two versions)

C

,

D

(two versions),

 F

or , or

 G

or or(two versions)

Other

,

• 

The Lie algebras are all simple Lie algebras. The are classical matrix algebras which are often used in Lie theory and differential geometry.

• 

The precise definitions and examples of each of these Lie algebras are found in SimpleLieAlgebraDataDetails .

• 

The command StandardRepresentation generates the standard matrix representations of these algebras.

• 

Cartan matrices, Dynkin diagram, Satake diagrams, positive roots can easily be found for each of the simple Lie algebra. See also SimpleLieAlgebraProperties .

• 

Subalgebras of any of these Lie algebras can be calculate using the command MatrixSubalgebras.

• 

 Two versions of the Lie algebras and are available, corresponding the choices

 

for the quadratic form preserved by these algebras. The keyword argument version.specifies the choice. The default is version =1. This choice is preferred for roots space computations.

• 

The keyword arguments labelformat, labels  allow for the labeling of the basis of the abstract Lie algebra which characterizes the basis elements in terms of their standard matrix elements. See LieAlgebraData, DGsetup.

Examples

with(DifferentialGeometry): with(LieAlgebras):

 

Example 1.

Initialize the Lie algebra the Lie algebra of trace-free 3×3 matrices.

LD1 := SimpleLieAlgebraData("sl(3)", alg1, labelformat = "gl", labels = ['E', 'theta']);

(2.1)

 

When this output is passed to DGsetup, the 8-dimensional Lie algebra with the foregoing structure equations is initialized and the unassigned names  are assigned as vectors and 1-forms for this Lie algebra.

DGsetup(LD1);

(2.2)

 

Here is the Lie bracket multiplication table for .

alg1 > 

MultiplicationTable("LieTable");

 

This coincides with the commutator formulas for the standard matrix representation of .

alg1 > 

StandardRepresentation(alg1);

The 3rd basis element  matches the 3rd matrix in the standard representation and is precisely the elementary matrix with a 1 in the 1st column, 2nd row.

 

Example 2

We initialize the Lie algebra in two different basis. Our first version is:

alg1 > 

LD2a := SimpleLieAlgebraData("so(3, 1)", so31a, labelformat = "gl", labels = ['X', 'zeta']);

(2.3)
alg1 > 

DGsetup(LD2a);

(2.4)
so31a > 

MultiplicationTable("LieTable");

 

Our second version is :

so31a > 

LD2b := SimpleLieAlgebraData("so(3, 1)", so31b, labelformat = "gl", labels = ['Y', 'xi'], version = 2);

(2.5)
alg1 > 

DGsetup(LD2b);

(2.6)
so31a > 

MultiplicationTable("LieTable");

 

From the standard matrix representations for these 2 Lie algebras we can construct a Lie algebra isomorphism . First let us define the quadratic forms used in each version.

so31b > 

with(LinearAlgebra):

so31b > 

Qa := Matrix([[0, 1, 0, 0], [1, 0, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]);

so31b > 

Qb := Matrix([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, -1]]);

 

Here is the change of basis matrix relating  to .

so31b > 

P := Matrix([[0,0,1/sqrt(2), 1/sqrt(2)],[0,0,1/sqrt(2), -1/sqrt(2)], [0, 1, 0, 0], [1, 0, 0, 0]]);

so31b > 

Transpose(P).Qa.P;

 

Here is the standard representation for using .

so31b > 

A := StandardRepresentation(so31a);

 

Here is the standard representation for using

so31b > 

B := StandardRepresentation(so31b);

 

Here are the matrices  under the change of basis defined by  Since the resulting matrices now preserve , they must be linear combinations of the matrices B.

so31b > 

A1 := [seq(P^(-1).a.P, a = A)];

so31b > 

C := GetComponents(A1, B);

(2.7)

 

These components specify the matrix of the isomorphism we want.

so31b > 

Phi := Transformation(so31a, so31b, Transpose(Matrix(C)));

(2.8)
so31b > 

Query(Phi, "Homomorphism");

(2.9)

 

Example 3.

Two versions of the split real form of the exception Lie algebraare available. The first version gives a Chevalley basis.

LD3a := SimpleLieAlgebraData("g(2, Split)", g2a, version = 1);

(2.10)

DGsetup(LD3a, ['h1', 'h2', 'x1', 'x2', 'x3', 'x4', 'x5', 'x6', 'y1', 'y2', 'y3', 'y4', 'y5', 'y6'], ['omega']);

(2.11)

 

We note that this basis is adapted to a root space decomposition.

g2a > 

RootSpaceDecomposition([h1, h2]);

(2.12)

 

The second version is adapted to the Cartan decomposition.

g2a > 

LD3b := SimpleLieAlgebraData("g(2, Split)", g2b, version = 2);

(2.13)
g2a > 

DGsetup(LD3b, ['t1', 't2', 't3', 't4', 't5', 't6', 'p1', 'p2', 'p3', 'p4', 'p5', 'p6', 'p7', 'p8'], ['omega']);

(2.14)
g2a > 

T := [t1, t2, t3, t4, t5, t6];

(2.15)
g2b > 

P := [p1, p2, p3, p4, p5, p6, p7, p8];

(2.16)
g2b > 

Query(T, P, "CartanDecomposition");

(2.17)

 

See Also

DifferentialGeometry

CartanSubalgebra

DGsetup

GetComponents

LieAlgebraData

PositiveRoots

SimpleLieAlgebraProperties

Transformation

 


Download Help Document