HorizontalHomotopy - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


JetCalculus[HorizontalHomotopy] - apply the horizontal homotopy operator to a bi-form on a jet space

Calling Sequences

     HorizontalHomotopy(ω, options)

Parameters

     ω        - a differential bi-form on the jet space

     options - any of  the optional arguments used in the commands DeRhamHomotopy

 

Description

Details

Examples

Description

• 

Let π:EM be a fiber bundle, with base dimension n and fiber dimension m and let π∞ :J∞E M  be the infinite jet bundle of E. The space of p-forms ΩpJ∞E decomposes into a direct sum  ΩpJ  = r+s =p Ωr,sJE, where  Ωr,s JE is the space of bi-forms of horizontal degree r and vertical degree s.  The horizontal exterior derivative  is a mapping dH :Ωr,sJE Ωr+1,sJE with the following properties. A form ω  Ωr,s JE is called dH  closed if dH ω = 0 and dH exact if there is a bi-form η Ωr1,s JE such that ω = dH η. Since dHdH =0, every dH  exact bi-form is dH closed.

[i] If r<n, then every dH closed bi-form &omega; is dH exact, ω &equals; dH &eta;&period;

[ii] If r &equals;n and s&equals;0 and E&omega; &equals;0&comma; where E is the Euler-Lagrange operator, then ω &equals; dH &eta;.

[iii] If r &equals;n and s&gt;0 and I&omega; &equals;0&comma; where I is the integration by parts operator, then ω &equals; dH &eta;.

There are a number of algorithms for finding the bi-form &eta;&period; One approach is to use the horizontal homotopy operators hHr&comma;s &colon;  Ωr&comma;sJE  Ωr1&comma;sJE. Similar to the DeRham homotopy operator, these homotopy operators satisfy the identities

[i]  hHr&plus;1&comma; s dH &omega; &plus; dHhHr&comma;s &omega; &equals; &omega;   if  r<n &semi;

[ii]   dHhHr&comma;s &omega; &equals; &omega;   if   r &equals;n  and s &equals;0 and E&omega; &equals;0. 

[iii]   dHhHr&comma;s &omega; &equals; &omega;   if   r &equals;n  and s &gt;0 and I&omega; &equals;0. 

• 

If &omega;  is a bi-form of degree r&comma;s with r&gt;0  then HorizontalHomotopy(&omega;) returns a bi-form of degree (r1&comma; s&rpar;.

• 

For s &gt;0  the operators hHr&comma;s are total differential operators and therefore, unlike the usual homotopy operators for the de Rham complex or the vertical homotopy operators for bi-forms on jet spaces, do not involve any quadratures. For s&equals; 0 the horizontal homotopy does involve quadratures and the optional arguments used in the commands DeRhamHomotopy or VerticalHomotopy can be invoked.

• 

The command HorizontalHomotopy is part of the DifferentialGeometry:-JetCalculus package. It can be used in the form HorizontalHomotopy(...) only after executing the commands with(DifferentialGeometry) and with(JetCalculus), but can always be used by executing DifferentialGeometry:-JetCalculus:-HorizontalHomotopy(...).

Details

Here are the explicit formulas for the horizontal homotopy operators. Let &lpar;xi&comma; u&alpha;&comma; ui&alpha;&comma; uij&alpha;, ..., uij  k&alpha;&comma; ....&rpar; be a local system of jet coordinates and let &Theta;&alpha; &equals; du&alpha;u&ell;&alpha;dx&ell;. Let ω  Ωr&comma;sJ E be a k-th order bi-form with s1 and let E&alpha;I&omega; &Omega;r&comma;s1J Ebe the higher (interior product) Euler operators. Let  DI &equals; Di1i2i&ell; be the multi-total derivative operator and let  &omega;j &equals; &iota;Dj&omega;. Then

 

hHr&comma;s&omega; &equals;  1sI &equals;0k1  &verbar;I&verbar;&plus;1nr&plus;I &plus;1DI &Theta;&alpha; E&alpha;Ij&omega;j.

 

For s&equals;0&comma; the horizontal homotopy operator is defined in terms of the vertical exterior derivative dV  and the vertical homotopy operator  hVr&comma;s by

hHr&comma;s&omega; &equals;   hVr1&comma; 1hHr&comma;1dV&omega;&period;

For further information, see:

[i] Ian M. Anderson, Notes on the Variational Bicomplex.

[ii] Niky. Kamran, Selected Topics in the Geometrical Study of Differential Equations, CBMS Lecture Series, 2002.

[iii] Peter J. Olver, Applications of Lie Groups to Differential Equations, Chapter 5.

 

Examples

with(DifferentialGeometry): with(JetCalculus):

 

Example 1.

Create the jet space J3E for the bundle E with coordinates x&comma; u x&period;

DGsetup([x], [u], E, 3):

 

Show that the EulerLagrange form for &omega;1 is 0 so that &omega;1 is dH exact.

E > 

omega1 := evalDG((u[1,1,1]*u[1] + x*u[1,1,1]*u[1,1] + 2*u[1,1]*u[1,1,1] + x*u[1]*u[1,1,1,1])*Dx);

&omega;1xu1u1,1,1,1+xu1,1,1u1,1+u1,1,1u1+2u1,1u1,1,1Dx

(3.1)
E > 

EulerLagrange(omega1);

0DxCu

(3.2)

 

Apply the horizontal homotopy operator to &omega;1

E > 

eta1 := HorizontalHomotopy(omega1);

&eta;1xu1,1,1u1+u1,12

(3.3)

 

Check that the horizontal exterior derivative of &eta;1 gives &omega;1.

E > 

omega1 &minus HorizontalExteriorDerivative(eta1);

0Dx

(3.4)

 

Example 2.

Show that the integration by parts operator for the type (1, 2)  bi-form &omega;1 is 0 so that &omega;2 is dH exact.

E > 

omega2 := evalDG(Dx &w Cu[1] &w Cu[1,1,1,1] + Dx &w Cu[1,1] &w Cu[1,1,1]);

&omega;2DxCu1Cu1,1,1,1+DxCu1,1Cu1,1,1

(3.5)
E > 

IntegrationByParts(omega2);

0DxCuCu1

(3.6)

 

Apply the horizontal homotopy operator to &omega;2&period;

E > 

eta2 := HorizontalHomotopy(omega2);

&eta;2Cu1Cu1,1,1

(3.7)
E > 

omega2 &minus HorizontalExteriorDerivative(eta2);

0DxCuCu1

(3.8)

 

Example 3.

Show that the Euler-Lagrange form for &omega;3 is 0 so that &omega;3 is dH exact.

E > 

HorizontalExteriorDerivative((u[1]*u[1,1,1])/u[1,1]^4);

(3.9)
E > 

omega3 := map(expand, evalDG((u[1,1]^2*u[1,1,1] - 4*u[1,1,1]^2*u[1] + u[1]*u[1,1,1,1]*u[1,1])/u[1,1]^5*Dx));

&omega;3u1,1,1u1,134u1u1,1,12u1,15+u1u1,1,1,1u1,14Dx

(3.10)
E > 

EulerLagrange(omega3);

0DxCu

(3.11)

 

Apply the horizontal homotopy operator to &omega;3. Because &omega;3 is singular at  u1&comma;1 &equals; 0 we change the integration limits in the homotopy formula but still perform a radial integration.  See  DeRhamHomotopy for a detailed discussion.

E > 

eta3a := HorizontalHomotopy(omega3, integrationlimits = [infinity, 1]);

eta3au1,1,1u1u1,14

(3.12)

 

Check that dH &eta;3 &equals; &omega;3.

E > 

omega3 &minus HorizontalExteriorDerivative(eta3a);

0Dx

(3.13)

 

Instead of changing the limits of integration we can change the integration path to a sequence of coordinate lines.  See HorizontalExteriorDerivative for a detailed discussion.

opt := intmethod = "ExteriorDerivativeHomotopy", path = "zigzag", variableorder = [x, u[], u[1], u[1,1], u[1,1,1], u[1,1,1,1], u[1,1,1,1,1]], initialpoint = [u[1,1] = 1];

optintmethod=ExteriorDerivativeHomotopy,path=zigzag,variableorder=x&comma;u&comma;u1&comma;u1,1&comma;u1,1,1&comma;u1,1,1,1&comma;u1,1,1,1,1,initialpoint=u1,1=1

(3.14)
E > 

eta3b := HorizontalHomotopy(omega3, opt);

eta3bu1,1,1u1u1,14

(3.15)

 

Example 4.

Create the jet space J2E for the bundle E with coordinates x&comma; u&comma; u&comma; v x&comma;y.

E > 

DGsetup([x, y], [u, v], E2, 2):

 

Define a type (1, 0) biform &omega;4 and check that it is closed.

E2 > 

omega4 := evalDG((v[2, 2]*u[1, 1] + u[1]*v[1, 2, 2])*Dx + (v[2, 2]*u[1, 2] + u[1]*v[2, 2, 2])*Dy);

&omega;4u1v1,2,2+v2,2u1,1Dx+u1v2,2,2+v2,2u1,2Dy

(3.16)
E2 > 

HorizontalExteriorDerivative(omega4);

0DxDy

(3.17)

 

Apply the horizontal homotopy operator to define &eta;4.

E2 > 

eta4 := HorizontalHomotopy(omega4);

&eta;4v2,2u1

(3.18)

 

Check that &omega;4  &equals;dH &eta;4.

E2 > 

omega4 &minus HorizontalExteriorDerivative(eta4);

0Dx

(3.19)

 

Example 5.

Define a type (2, 0) form &omega;5  and check that its Euler-Lagrange form vanishes identically.

E2 > 

omega5 := evalDG((v[2]*u[1, 1] + u[1]*v[1, 2] - v[1]*u[1, 2, 2] - u[1, 2]*v[1, 2])* Dx &w Dy);

&omega;5u1v1,2+v2u1,1u1,2v1,2v1u1,2,2DxDy

(3.20)
E2 > 

EulerLagrange(omega5);

0DxDyCu

(3.21)
E2 > 

eta5a := HorizontalHomotopy(omega5);

eta5a712v1u1,214v1u116v1,1u2+112u1v1,214vu1,114vu1,1,2+112v1,1,2uDx+16v1u2,2+34v2u114v2u1,2112v1,2u214vu1,214vu1,2,2+112v1,2,2uDy

(3.22)
E2 > 

omega5 &minus HorizontalExteriorDerivative(eta5a);

0DxDy

(3.23)

 

So &omega;5 &equals; dH&eta;5a , but we can often find a much simpler answer.

E2 > 

opt := intmethod = "ExteriorDerivativeHomotopy", path = "zigzag", variableorder = Tools:-DGinfo(E2, "FrameJetVariables");

optintmethod=ExteriorDerivativeHomotopy,path=zigzag,variableorder=x&comma;y&comma;u&comma;v&comma;u1&comma;u2&comma;v1&comma;v2&comma;u1,1&comma;u1,2&comma;u2,2&comma;v1,1&comma;v1,2&comma;v2,2&comma;u1,1,1&comma;u1,1,2&comma;u1,2,2&comma;u2,2,2&comma;v1,1,1&comma;v1,1,2&comma;v1,2,2&comma;v2,2,2

(3.24)
E2 > 

eta5b := HorizontalHomotopy(omega5, opt);

eta5bv1u1,2Dx+v2u1Dy

(3.25)
E2 > 

omega5 &minus HorizontalExteriorDerivative(eta5b);

0DxDy

(3.26)

See Also

DifferentialGeometry

JetCalculus

EulerLagrange

HorizontalExteriorDerivative

IntegrationByParts

VerticalExteriorDerivative

VerticalHomotopy

ZigZag