exterior_power - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

DEtools

  

exterior_power

  

return the exterior power of a differential operator

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

exterior_power(L, n, domain)

exterior_power(eqn, n, dvar)

Parameters

L

-

differential operator

n

-

positive integer

domain

-

list containing two names

eqn

-

homogeneous linear differential equation

dvar

-

dependent variable

Description

• 

The input L is a differential operator. The output of this procedure is a linear differential operator  of minimal order such that for all solutions  of L, the determinant of the Wronskian  is a solution of .

• 

An important property of the exterior power  is the following: If L has rational functions coefficients and L has a right-hand factor of order n, then M has a right-hand factor of order  (in other words:  has an exponential solution  where  is a rational function).

• 

The argument domain describes the differential algebra. If this argument is the list , then the differential operators are notated with the symbols  and . They are viewed as elements of the differential algebra  where  is the field of constants.

• 

If the argument domain is omitted then the differential specified by the environment variable _Envdiffopdomain is used. If this environment variable is not set then the argument domain may not be omitted.

• 

Instead of a differential operator, the input can also be a linear homogeneous differential equation, eqn. In this case the third argument must be the dependent variable dvar.

Examples

(1)

(2)

(3)

(4)

See Also

DEtools[expsols]

diffop

 


Download Help Document