 median - Maple Help

geometry

 median
 find the median of a given triangle Calling Sequence median(mA, A, ABC, M) Parameters

 mA - A-median of ABC A - vertex of ABC ABC - triangle M - (optional) name Description

 • The A-median of triangle ABC is the cevian line through the midpoint of the side BC.
 • If the third optional argument M is given, the object returned a line segment AM where M is the midpoint of the side BC.
 • For a detailed description of the median mA, use the routine detail (i.e., detail(mA))
 • Note that the routine only works if the vertices of the triangle are known.
 • The command with(geometry,median) allows the use of the abbreviated form of this command. Examples

 > $\mathrm{with}\left(\mathrm{geometry}\right):$
 > $\mathrm{triangle}\left(\mathrm{ABC},\left[\mathrm{point}\left(A,0,0\right),\mathrm{point}\left(B,2,0\right),\mathrm{point}\left(C,1,3\right)\right]\right):$
 > $\mathrm{median}\left(\mathrm{mA},A,\mathrm{ABC}\right)$
 ${\mathrm{mA}}$ (1)
 > $\mathrm{form}\left(\mathrm{mA}\right)$
 ${\mathrm{line2d}}$ (2)
 > $\mathrm{detail}\left(\mathrm{mA}\right)$
 assume that the names of the horizontal and vertical axes are _x and _y, respectively
 $\begin{array}{ll}{\text{name of the object}}& {\mathrm{mA}}\\ {\text{form of the object}}& {\mathrm{line2d}}\\ {\text{equation of the line}}& {-}\frac{{3}{}{\mathrm{_x}}}{{2}}{+}\frac{{3}{}{\mathrm{_y}}}{{2}}{=}{0}\end{array}$ (3)
 > $\mathrm{median}\left(\mathrm{mA},A,\mathrm{ABC},M\right)$
 ${\mathrm{mA}}$ (4)
 > $\mathrm{form}\left(\mathrm{mA}\right)$
 ${\mathrm{segment2d}}$ (5)
 > $\mathrm{detail}\left(\mathrm{mA}\right)$
 $\begin{array}{ll}{\text{name of the object}}& {\mathrm{mA}}\\ {\text{form of the object}}& {\mathrm{segment2d}}\\ {\text{the two ends of the segment}}& \left[\left[{0}{,}{0}\right]{,}\left[\frac{{3}}{{2}}{,}\frac{{3}}{{2}}\right]\right]\end{array}$ (6)