 symbolic order - Maple Help

diff/x$n compute a (partial) symbolic integer order derivative (or integral) of an expression Calling Sequence  diff( f(x), x$n ) $\frac{{ⅆ}^{n}}{ⅆ{x}^{n}}\phantom{\rule[-0.0ex]{0.4em}{0.0ex}}f\left(x\right)$ diff( f(x), x$(-n) ) Parameters  f(x) - algebraic expression depending on x to be differentiated (or integrated) x - name; differentiation (or integration) variable n - symbol understood to be an integer representing the differentiation (or integration) order Description  • The diff( f(x), x$n ) calling sequence computes a formula for the nth (integer order) derivative of the expression f(x). To compute derivatives of fractional order see fracdiff.
 • The diff( f(x), x$(-n) ) calling sequence computes a formula for the nth integral of the expression f(x).  • The symbolic derivative is computed using a database of core differentiation formulas, sum representations for functions, full partial fraction expansions, and tools from the gfun package.  • You can enter the command for symbolic differentiation using either the 1-D or 2-D calling sequence. For example, diff(cos(x), x$n) is equivalent to $\frac{{ⅆ}^{n}}{ⅆ{x}^{n}}\phantom{\rule[-0.0ex]{0.4em}{0.0ex}}\mathrm{cos}\left(x\right)$.
 • The environment variable _EnvFallingNotation allows you to select how "x to the n falling" is represented: x^falling(n) := x(x-1)(x-2)...(x-n+1) can be represented by the pochhammer symbol, GAMMA notation, or factorial notation.  Each has some advantages. The default value is pochhammer.
 Note: The command diff implicitly assumes that n is an integer. Substitution of fractional values into the resulting formula will not compute fractional derivatives - for that purpose use fracdiff. Depending on the case, symbolic order differentiation can be a computationally expensive operation; uncomputed sums in the output are represented using Sum, not sum. The Computational Approach

 The expression is recursively examined for simple expressions.  A direct formula for monomials of the form C*(x-a)^p is used when such patterns are matched in the input.  Rational functions are converted to full partial fraction form.
 When complicated terms are found in the input, a sequence of increasingly powerful heuristics is tried: guessing a differential equation satisfied by the term, converting it to hypergeometric form, or converting it to Sum form by means of the built-in functional database. Examples

Compute the nth derivative of cos(x).

 > $\mathrm{cn}≔\frac{{ⅆ}^{n}}{ⅆ{x}^{n}}\mathrm{cos}\left(x\right)$
 ${\mathrm{cn}}{≔}{\mathrm{cos}}{}\left({x}{+}\frac{{n}{}{\mathrm{\pi }}}{{2}}\right)$ (1)

Compare with the result obtained by direct differentiation.

 > $\mathrm{c3}≔\frac{{ⅆ}^{3}}{ⅆ{x}^{3}}\mathrm{cos}\left(x\right)$
 ${\mathrm{c3}}{≔}{\mathrm{sin}}{}\left({x}\right)$ (2)
 > $\genfrac{}{}{0}{}{\left(\mathrm{c3}-\mathrm{cn}\right)}{\phantom{n=3}}\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}|\phantom{\rule[-0.0ex]{0.1em}{0.0ex}}\genfrac{}{}{0}{}{\phantom{\left(\mathrm{c3}-\mathrm{cn}\right)}}{n=3}$
 ${0}$ (3)

Compute the nth integral of ${ⅇ}^{2x}$.

 > $\frac{{ⅆ}^{-n}}{ⅆ{x}^{-n}}{ⅇ}^{2x}$
 ${{ⅇ}}^{{2}{}{x}}{}{{2}}^{{-}{n}}$ (4)

A basic formula: symbolic derivative of a monomial:

 > $\mathrm{diff}\left({x}^{m},x$n\right)$  ${\mathrm{pochhammer}}{}\left({m}{-}{n}{+}{1}{,}{n}\right){}{{x}}^{{m}{-}{n}}$ (5) A more difficult function:  > $\mathrm{tn}≔\frac{{ⅆ}^{n}}{ⅆ{x}^{n}}\mathrm{arctan}\left(x\right)$  ${\mathrm{tn}}{≔}\frac{{{2}}^{{n}}{}{\mathrm{MeijerG}}{}\left(\left[\left[{0}{,}{0}{,}\frac{{1}}{{2}}\right]{,}\left[\right]\right]{,}\left[\left[{0}\right]{,}\left[{-}\frac{{1}}{{2}}{+}\frac{{n}}{{2}}{,}\frac{{n}}{{2}}\right]\right]{,}{{x}}^{{2}}\right){}{{x}}^{{1}{-}{n}}}{{2}}$ (6)  > $\mathrm{normal}\left(\mathrm{expand}\left(\mathrm{evalc}\left(\mathrm{simplify}\left(\genfrac{}{}{0}{}{\left(\frac{{ⅆ}^{5}}{ⅆ{x}^{5}}\mathrm{arctan}\left(x\right)-\mathrm{tn}\right)}{\phantom{n=5}}\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}|\phantom{\rule[-0.0ex]{0.1em}{0.0ex}}\genfrac{}{}{0}{}{\phantom{\left(\frac{{ⅆ}^{5}}{ⅆ{x}^{5}}\mathrm{arctan}\left(x\right)-\mathrm{tn}\right)}}{n=5}\right)\right)\right)\right)$  ${0}$ (7) Compute the formula for the nth derivative of sin(x).  > $\mathrm{Diff}\left(\mathrm{sin}\left(x\right),x$n\right)$
 $\frac{{{ⅆ}}^{{n}}}{{ⅆ}{{x}}^{{n}}}\phantom{\rule[-0.0ex]{0.4em}{0.0ex}}{\mathrm{sin}}{}\left({x}\right)$ (8)
 > $\mathrm{value}\left(\right)$
 ${\mathrm{sin}}{}\left({x}{+}\frac{{n}{}{\mathrm{\pi }}}{{2}}\right)$ (9)

Now compute the nth integral of the result.

 > $\mathrm{diff}\left(,x\$-n\right)$
 ${\mathrm{sin}}{}\left({x}\right)$ (10) References

 Benghorbal, Mhenni, and Corless, Robert M. "The nth derivative." SIGSAM Bull (Communications in Computer Algebra). Vol. 36 No. 1, (2002): 10-14. http://doi.acm.org/10.1145/565145.565149