DisplayQuantifierFreeFormula - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

RegularChains[SemiAlgebraicSetTools]

 DisplayQuantifierFreeFormula
 pretty printing of a quantifier-free formula

 Calling Sequence DisplayQuantifierFreeFormula(qff)

Parameters

 qff - quantifier-free formula

Description

 • Print the quantifier-free formula in logic formula form

Examples

 > $\mathrm{with}\left(\mathrm{RegularChains}\right):$
 > $\mathrm{with}\left(\mathrm{ParametricSystemTools}\right):$
 > $\mathrm{with}\left(\mathrm{SemiAlgebraicSetTools}\right):$
 > $R≔\mathrm{PolynomialRing}\left(\left[x,b,a,c\right]\right)$
 ${R}{≔}{\mathrm{polynomial_ring}}$ (1)
 > $F≔\left[a{x}^{2}+bx+c\right]$
 ${F}{≔}\left[{a}{}{{x}}^{{2}}{+}{b}{}{x}{+}{c}\right]$ (2)
 > $N≔\left[\right]$
 ${N}{≔}\left[\right]$ (3)
 > $P≔\left[x\right]$
 ${P}{≔}\left[{x}\right]$ (4)
 > $H≔\left[a\right]$
 ${H}{≔}\left[{a}\right]$ (5)
 > $\mathrm{rrc}≔\mathrm{RealRootClassification}\left(F,\left[\right],\left[x\right],\left[a\right],3,2,R\right)$
 ${\mathrm{rrc}}{≔}\left[\left[{\mathrm{regular_semi_algebraic_set}}\right]{,}{\mathrm{border_polynomial}}\right]$ (6)
 > $\mathrm{rsas}≔{{\mathrm{rrc}}_{1}}_{1}$
 ${\mathrm{rsas}}{≔}{\mathrm{regular_semi_algebraic_set}}$ (7)
 > $\mathrm{pbx}≔\mathrm{RepresentingBox}\left(\mathrm{rsas},R\right)$
 ${\mathrm{pbx}}{≔}{\mathrm{parametric_box}}$ (8)
 > $\mathrm{qff}≔\mathrm{RepresentingQuantifierFreeFormula}\left(\mathrm{pbx}\right)$
 ${\mathrm{qff}}{≔}{\mathrm{quantifier_free_formula}}$ (9)
 > $\mathrm{DisplayQuantifierFreeFormula}\left(\mathrm{qff}\right):$
 ${c}{<}{0}\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}{\mathbf{and}}\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}{a}{<}{0}\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}{\mathbf{and}}\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}{b}{>}{0}\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}{\mathbf{and}}\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}{4}{}{a}{}{c}{-}{{b}}^{{2}}{<}{0}$
 $\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}{\mathbf{or}}\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}{c}{>}{0}\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}{\mathbf{and}}\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}{a}{>}{0}\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}{\mathbf{and}}\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}{b}{<}{0}\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}{\mathbf{and}}\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}{4}{}{a}{}{c}{-}{{b}}^{{2}}{<}{0}$ (10)