PolynomialMapImage - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


RegularChains[ConstructibleSetTools]

  

PolynomialMapImage

  

compute the image of a variety under a polynomial map

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

PolynomialMapImage(F, PM, R, S)

PolynomialMapImage(F, H, PM, R, S)

PolynomialMapImage(CS, PM, R, S)

Parameters

F

-

list of polynomials in R

PM

-

list of polynomials in R

R

-

polynomial ring (source)

S

-

polynomial ring (target)

H

-

list of polynomials in R

CS

-

constructible set

Description

• 

The command PolynomialMapImage(F, PM, R, S) returns a constructible set cs which is the image of the variety VF under the polynomial map PM.

• 

The command PolynomialMapImage(F, H, PM, R, S) returns a constructible set cs which is the image of the difference of the variety VF by the variety VH under the polynomial map PM.

• 

The command PolynomialMapImage(CS, PM, R, S) returns a constructible set cs which is the image of the constructible set CS under the polynomial map PM.

• 

Both rings R and S should be over the same base field.

• 

The variable sets of R and S should be disjoint.

• 

The number of polynomials in PM is equal to the number of variables of ring S.

• 

This command is part of the RegularChains[ConstructibleSetTools] package, so it can be used in the form PolynomialMapImage(..) only after executing the command with(RegularChains[ConstructibleSetTools]).  However, it can always be accessed through the long form of the command by using RegularChains[ConstructibleSetTools][PolynomialMapImage](..).

Examples

withRegularChains:

withConstructibleSetTools:

The following example is related to the Whitney umbrella.

RPolynomialRingu,v

Rpolynomial_ring

(1)

SPolynomialRingx,y,z

Spolynomial_ring

(2)

PMuv,u,v2

PMuv,u,v2

(3)

csPolynomialMapImage,PM,R,S

csconstructible_set

(4)

csMakePairwiseDisjointcs,S

csconstructible_set

(5)

Infocs,S

x,y,1,x2y2z,y

(6)

See Also

ConstructibleSet

ConstructibleSetTools

Difference

MakePairwiseDisjoint

Projection

RegularChains