Lcm - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

Ordinals

  

Lcm

  

least common right multiple of ordinals

 

Calling Sequence

Parameters

Description

Examples

Compatibility

Calling Sequence

Lcm(a, b, ...)

Parameters

a, b, ...

-

ordinals, nonnegative integers, or polynomials with positive integer coefficients

Description

• 

The Lcm(a, b, ...) calling sequence computes the unique least common right multiple of the given ordinal numbers. It returns either an ordinal data structure, a nonnegative integer, or a polynomial with positive integer coefficients.

• 

If m is the largest ordinal among all the arguments, the least common right multiple equals either m·c for a positive integer c or, m·ω.

• 

If some of the arguments are parametric ordinals and the least common right multiple cannot be determined, an error is raised.

Examples

withOrdinals:

aOrdinal1,1,0,1

aω+1

(1)

bOrdinal2,2,1,2,0,1

bω22+ω2+1

(2)

cOrdinal2,3,1,2,0,1

cω23+ω2+1

(3)

l1Lcma,b,c

l1ω26+ω2+1

(4)

Divl1,a

ω6+2,0

(5)

Divl1,b

3,0

(6)

Divl1,c

2,0

(7)

l2Lcma+1,b,c

l2ω3

(8)

Divl2,a+1

ω2,0

(9)

Divl2,b

ω,0

(10)

Divl2,c

ω,0

(11)

Any of the arguments can be a nonnegative integer.

Lcma,b,c,0

0

(12)

Lcma+1,2

ω+2

(13)

Lcma+1,3

ω2

(14)

Parametric examples.

dOrdinal2,x,1,2,0,1

dω2x+ω2+1

(15)

Lcma,b,d

Error, (in Ordinals:-Lcm) cannot determine if x is nonzero

Lcma,b,Evald,x=x+1

Error, (in Ordinals:-Lcm) unable to compute lcm

Lcma,b,Evald,x=2x+2

ω22x+2+ω2+1

(16)

Div,b

x+1,0

(17)

Div,a

ω2x+2+2,0

(18)

Compatibility

• 

The Ordinals[Lcm] command was introduced in Maple 2015.

• 

For more information on Maple 2015 changes, see Updates in Maple 2015.

See Also

Ordinals

Ordinals[Div]

Ordinals[Gcd]

Ordinals[Max]

Ordinals[Mult]

Ordinals[Ordinal]

 


Download Help Document