Gcd - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

Ordinals

  

Gcd

  

greatest common left divisor of ordinals

 

Calling Sequence

Parameters

Description

Examples

Compatibility

Calling Sequence

Gcd(a, b, ...)

Parameters

a, b, ...

-

ordinals, nonnegative integers, or polynomials with positive integer coefficients

Description

• 

The Gcd(a, b, ...) calling sequence computes the unique greatest common left divisor of the given ordinal numbers. It returns either an ordinal data structure, a nonnegative integer, or a polynomial with positive integer coefficients.

• 

If some of the arguments are parametric ordinals and the greatest common left divisor cannot be determined, an error is raised.

Examples

withOrdinals

`+`&comma;`.`&comma;`<`&comma;<=&comma;Add&comma;Base&comma;Dec&comma;Decompose&comma;Div&comma;Eval&comma;Factor&comma;Gcd&comma;Lcm&comma;LessThan&comma;Log&comma;Max&comma;Min&comma;Mult&comma;Ordinal&comma;Power&comma;Split&comma;Sub&comma;`^`&comma;degree&comma;lcoeff&comma;log&comma;lterm&comma;ω&comma;quo&comma;rem&comma;tcoeff&comma;tdegree&comma;tterm

(1)

aOrdinalω&comma;1&comma;1&comma;2&comma;0&comma;1

aωω&plus;ω2&plus;1

(2)

bOrdinal3&comma;1&comma;1&comma;1&comma;0&comma;1

bω3&plus;ω&plus;1

(3)

cOrdinal2&comma;1&comma;1&comma;3&comma;0&comma;1

cω2&plus;ω3&plus;1

(4)

Gcda&comma;b&comma;c

ω&plus;1

(5)

Diva&comma;

ωω&plus;2&comma;0

(6)

Divb&comma;

ω2&plus;1&comma;0

(7)

Divc&comma;

ω&plus;3&comma;0

(8)

Any of the arguments can be a positive integer.

Gcd12&comma;20&comma;30

2

(9)

Gcd18&comma;12·b&comma;30·c

6

(10)

Gcd3&comma;ω

3

(11)

Gcd3&comma;ω&comma;ω+1

1

(12)

Parametric examples.

dOrdinal2&comma;x&comma;1&comma;3&comma;0&comma;1

dω2x&plus;ω3&plus;1

(13)

Gcda&comma;b&comma;d

ω&plus;1

(14)

eOrdinal2&comma;1&comma;1&comma;1&comma;0&comma;1

eω2&plus;ω&plus;1

(15)

Gcdd&comma;e

ω&plus;1

(16)

Divd&comma;

ωx&plus;3&comma;0

(17)

Dive&comma;

ω&plus;1&comma;0

(18)

fOrdinal3&comma;1&comma;1&comma;3&comma;0&comma;1

fω3&plus;ω3&plus;1

(19)

Gcdd&comma;f

Error, (in Ordinals:-Gcd) cannot determine if x is nonzero

GcdEvald&comma;x=x+1&comma;f

ω3&plus;1

(20)

gOrdinal4&comma;1&comma;2&comma;x+1

gω4&plus;ω2x+1

(21)

hOrdinal3&comma;2&comma;1&comma;y+1&comma;0&comma;z

hω32&plus;ωy+1&plus;z

(22)

Gcdg&comma;h

ωy+1&plus;z

(23)

Divg&comma;

ω3&plus;ωx+1&comma;0

(24)

Divh&comma;

ω22&plus;1&comma;0

(25)

Gcd4&comma;h&comma;ω+6

igcd2&comma;z

(26)

Compatibility

• 

The Ordinals[Gcd] command was introduced in Maple 2015.

• 

For more information on Maple 2015 changes, see Updates in Maple 2015.

See Also

Ordinals

Ordinals[Div]

Ordinals[Lcm]

Ordinals[Min]

Ordinals[Mult]

Ordinals[Ordinal]

 


Download Help Document