Ordinals
Gcd
greatest common left divisor of ordinals
Calling Sequence
Parameters
Description
Examples
Compatibility
Gcd(a, b, ...)
a, b, ...
-
ordinals, nonnegative integers, or polynomials with positive integer coefficients
The Gcd(a, b, ...) calling sequence computes the unique greatest common left divisor of the given ordinal numbers. It returns either an ordinal data structure, a nonnegative integer, or a polynomial with positive integer coefficients.
If some of the arguments are parametric ordinals and the greatest common left divisor cannot be determined, an error is raised.
withOrdinals
`+`,`.`,`<`,<=,Add,Base,Dec,Decompose,Div,Eval,Factor,Gcd,Lcm,LessThan,Log,Max,Min,Mult,Ordinal,Power,Split,Sub,`^`,degree,lcoeff,log,lterm,ω,quo,rem,tcoeff,tdegree,tterm
a≔Ordinalω,1,1,2,0,1
a≔ωω+ω⋅2+1
b≔Ordinal3,1,1,1,0,1
b≔ω3+ω+1
c≔Ordinal2,1,1,3,0,1
c≔ω2+ω⋅3+1
Gcda,b,c
ω+1
Diva,
ωω+2,0
Divb,
ω2+1,0
Divc,
ω+3,0
Any of the arguments can be a positive integer.
Gcd12,20,30
2
Gcd18,12·b,30·c
6
Gcd3,ω
3
Gcd3,ω,ω+1
1
Parametric examples.
d≔Ordinal2,x,1,3,0,1
d≔ω2⋅x+ω⋅3+1
Gcda,b,d
e≔Ordinal2,1,1,1,0,1
e≔ω2+ω+1
Gcdd,e
Divd,
ω⋅x+3,0
Dive,
ω+1,0
f≔Ordinal3,1,1,3,0,1
f≔ω3+ω⋅3+1
Gcdd,f
Error, (in Ordinals:-Gcd) cannot determine if x is nonzero
GcdEvald,x=x+1,f
ω⋅3+1
g≔Ordinal4,1,2,x+1
g≔ω4+ω2⋅x+1
h≔Ordinal3,2,1,y+1,0,z
h≔ω3⋅2+ω⋅y+1+z
Gcdg,h
ω⋅y+1+z
Divg,
ω3+ω⋅x+1,0
Divh,
ω2⋅2+1,0
Gcd4,h,ω+6
igcd2,z
The Ordinals[Gcd] command was introduced in Maple 2015.
For more information on Maple 2015 changes, see Updates in Maple 2015.
See Also
Ordinals[Div]
Ordinals[Lcm]
Ordinals[Min]
Ordinals[Mult]
Ordinals[Ordinal]
Download Help Document