AgemoPGroup - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


GroupTheory

  

AgemoPGroup

  

construct an Agemo of a p-group

  

OmegaPGroup

  

construct an Omega of a p-group

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

AgemoPGroup( G )

AgemoPGroup( n, G )

OmegaPGroup( G )

OmegaPGroup( n, G )

Parameters

G

-

: PermutationGroup; a permutation -group, for a prime number

n

-

: nonnegint; (optional) a non-negative integer, default

Description

• 

If  is a non-negative integer, and  is a finite -group, then the subgroup  is defined to be the subgroup of  generated by elements of  of the form , as  ranges over all elements of .

• 

The AgemoPGroup( n, G ) command computes the subgroup  of G, where G is a permutation -group, for some prime .

• 

The first argument n is optional and is equal to  by default. That is, the command AgemoPGroup( G ) is equivalent to AgemoPGroup( 1, G ).

• 

For a -group , and a non-negative integer , the subgroup  is defined to be the subgroup generated by the elements  such that  = 1, for . That is, the subgroup generated by those members of  whose order divides .

• 

The OmegaPGroup( n, G ) command computes  for a permutation group G of prime power order.

• 

When called with two arguments,  and , the indicated subgroup  is returned. When called with just one argument , the subgroup  is returned.

Examples

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

While it is immediate from the definition that , for all  and any finite -group , equality may occur.

(15)

(16)

However, we must eventually reach the entire group .

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25)

See Also

GroupTheory[CyclicGroup]

GroupTheory[DihedralGroup]

GroupTheory[DirectProduct]

GroupTheory[GroupOrder]

GroupTheory[IsCyclic]

GroupTheory[IsPGroup]

GroupTheory[QuaternionGroup]

GroupTheory[SmallGroup]

GroupTheory[WreathProduct]

 


Download Help Document