EllipticModulus
Modulus function k(q)
Calling Sequence
Parameters
Description
Examples
EllipticModulus(q)
q
-
expression denoting a complex number such that q<1
Given the Nome q, q<1, entering the definition of Jacobi Theta functions, for instance
FunctionAdvisor(definition, JacobiTheta1)[1];
JacobiTheta1z,q=∑_k1=0∞2q_k1+122sinz2_k1+1−1_k1
EllipticModulus computes the corresponding Modulus k, 0<ℜk entering the definition of related elliptic integrals and JacobiPQ elliptic functions.
FunctionAdvisor(definition, EllipticF)[1];
EllipticFz,k=∫0z1−_α12+1−k2_α12+1ⅆ_α1
FunctionAdvisor(definition, JacobiSN)[1];
JacobiSNz,k=sinJacobiAMz,k
FunctionAdvisor(definition, JacobiAM);
z=JacobiAM∫0z11−k2sinθ2ⅆθ,k,z::−32,32
Alternatively, given the Modulus k, 0<ℜk entering Elliptic integrals and JacobiPQ functions, it is possible to compute the corresponding Nome q, q<1, using EllipticNome, which is the inverse function of EllipticModulus.
EllipticModulus is defined in terms of JacobiTheta functions by:
FunctionAdvisor( definition, EllipticModulus );
EllipticModulusq=JacobiTheta20,q2JacobiTheta30,q2,q<1
The JacobiPQ functions can be expressed in terms of JacobiTheta functions using EllipticNome
JacobiSN(z,k) = (1/(k^2))^(1/4) * JacobiTheta1(1/2*Pi*z/EllipticK(k),EllipticNome(k)) / JacobiTheta4(1/2*Pi*z/EllipticK(k),EllipticNome(k));
JacobiSNz,k=1k214JacobiTheta1πz2EllipticKk,EllipticNomekJacobiTheta4πz2EllipticKk,EllipticNomek
Alternative popular notations for elliptic integrals and JacobiPQ functions involve a parameter m or a modular angle alpha, as for instance in the Handbook of Mathematical Functions edited by Abramowitz and Stegun (A&S). These are related to k by m=k2 and sin(alpha) = k. For example, the Elliptic Km function shown in A&S is numerically equal to the Maple EllipticKm command.
FunctionAdvisordefinition,EllipticModulusq1
EllipticModulusq=JacobiTheta20,q2JacobiTheta30,q2
evalfeval,q=12
0.9999947611=0.9999947617
EllipticModulusEllipticNomek=k
evalfeval,k=2
2.=2.
EllipticNomeEllipticModulusq=q
0.5000000000=0.5000000000
See Also
EllipticF
EllipticNome
FunctionAdvisor
Download Help Document