DifferentialGeometry/Tensor/SubspaceType - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

Home : Support : Online Help : DifferentialGeometry/Tensor/SubspaceType

Tensor[SubspaceType] - determine the signature of the metric restricted to a subspace of the tangent space

Calling Sequences

     SubspaceType(g, S, pt, output)

Calling Sequences

   g       - a metric tensor on an -dimensional manifold . The signature of  is arbitrary

   S       - a list of vectors defining a subspace of the tangent space of

   pt      - (optional) a list of equations specifying the coordinates of a point  of

   output  - (optional) a keyword argument, one of "Matrix", "Riemannian", "PseudoRiemannian", "Null"

 

Description

Examples

See Also

Description

• 

Let  and let  be a -dimensional subspace of the tangent space  Let be a basis for  and let  be the  matrix with components

 

   The matrix  defines the metric on the subspace  induced by .  The subspace  is called "Riemannian" if  is positive or negative definite; "PseudoRiemannian" if  is indefinite and non-degenerate; and "Null" if  is degenerate ().

• 

Let  be the span of  vectors ; these vectors need not be linearly independent. The command SubspaceType(g, S) will attempt to determine the type of the subspace  at a generic point. It will return a sequence k, T, where k is the dimension of  and T is one of {"Riemannian", "PseudoRiemannian", "Null", Fail}. The value Fail typically indicates the subspace type is varying with respect to coordinates or parameters.

• 

With the optional argument pt, the type of the subspace  at pt is determined. Specific properties of the coordinates of the point pt can be specified using assuming.

• 

With the keyword argument output = "Matrix", the values of the matrix  and the basis used to compute , evaluated at the point , are returned.

• 

With the keyword argument output = "Riemannian", output = "PseudoRiemannian" or output = "Null", the command returns the sequence k, TF, where k is the dimension of the subspace  and TF is true or false.

• 

The user can trace the program branching by setting infolevel[SubspaceType] := 2.

• 

This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form SubspaceType(...) only after executing the commands with(DifferentialGeometry); with(Tensor); in that order.  It can always be used in the long form DifferentialGeometry:-Tensor:-SubspaceType.

Examples

 

For Examples 1 -- 4 we use coordinates  and the metric .

(2.1)
M > 

(2.2)

Example 1.

M > 

(2.3)
M > 

(2.4)
M > 

(2.5)
M > 

(2.6)
M > 

(2.7)
M > 

(2.8)

 

Example 2.

Here we give a simple example where the subspace type depends upon the value of the coordinates  and .

M > 

(2.9)

 

Because the subspace type depends upon  and , the first call to SubspaceType fails.

M > 

(2.10)

 

Specify the coordinates of a point and set the output option to "Matrix" to find the matrix form of the metric restricted to the subspace .

M > 

 

By inspection, we see that there are 3 possibilities:

Case 1. If  or , then the subspace type is "Null".

M > 

(2.11)
M > 

(2.12)

 

Case 2. If , then the subspace type is "PseudoRiemannian".

M > 

(2.13)

 

Case 3. If , then the subspace type is "Riemannian".

M > 

(2.14)

 

Example 3.

With the keyword argument output = "Riemannian", output = "PseudoRiemannian", or output = "Null", the command returns the sequence k, TF.

M > 

(2.15)

 

Example 4.

The user can trace the program branching by setting infolevel[SubspaceType] := 2.

M > 

(2.16)
M > 

The orbit type is "Null" if the induced metric on the orbit is degenerate
The orbit type is "Riemannian" if the induced metric on the orbit is positive or negative definite
The orbit type is "PseudoRiemannian" if the induced metric on the orbit is non-degenerate and indefinite
   The matrix h defining the induced metric is:

   Matrix(2, 2, [[1,0],[0,-1]])
The determinant of the matrix h is: -1

(2.17)
M > 

(2.18)

 

Example 5.

The command SubspaceType works in all dimensions.

 

M > 

(2.19)
M > 

(2.20)
M > 

(2.21)
M > 

The orbit type is "Null" if the induced metric on the orbit is degenerate

The orbit type is "Riemannian" if the induced metric on the orbit is positive or negative definite
The orbit type is "PseudoRiemannian" if the induced metric on the orbit is non-degenerate and indefinite
   The matrix h defining the induced metric is:
   Matrix(3, 3, [[0,0,0],[0,-1,0],[0,0,-1]])
The determinant of the matrix h is: 0

(2.22)
M > 

(2.23)
M > 

The orbit type is "Null" if the induced metric on the orbit is degenerate

The orbit type is "Riemannian" if the induced metric on the orbit is positive or negative definite
The orbit type is "PseudoRiemannian" if the induced metric on the orbit is non-degenerate and indefinite
   The matrix h defining the induced metric is:
   Matrix(4, 4, [[1,0,0,0],[0,-1,0,0],[0,0,-1,0],[0,0,0,-1]])
The determinant of the matrix h is: -1

(2.24)

 

The list of vectors specifying the subspace need not be linearly independent.

M > 

(2.25)
M > 

(2.26)
M > 

See Also

DifferentialGeometry, Tensor, assuming, infolevel, IsDefinite 


Download Help Document