For Examples 1 -- 4 we use the following metric.
Example 1.
Calculate the Segre type directly from the metric.
Example 2.
Calculate the Segre type from a null tetrad for the metric . First use the command DGGramSchmidt to construct an orthonormal tetrad.
Example 3.
If one intends to do a number of computations with the metric , it is usually computationally advantageous to work explicitly with an orthonormal frame or a null tetrad frame. See FrameData.
Example 4.
Here we determine the Segre type from the Newman-Penrose Ricci scalars (we continue with the null tetrad frame from the previous example). First calculate the Newman-Penrose Ricci scalars. This is always the best way to proceed since one can simplify, if need be, the Ricci scalars, before proceeding to calculate the more complicated invariants needed by the algorithm to determine the Segre type.
Example 5.
We give a simple example where the Segre type changes at exceptional coordinate values.
At generic coordinate values the Segre type is but is type at and type "D", ["ZZ(11)]" at0.
Example 6.
The branching that occurs in the algorithm for SegreType can be followed by setting infolevel[SegreType] := 2. In this example the spacetime metric is defined implicitly through the choice of the null tetrad.
To see why SegreType failed, set infolevel[SegreType] := 2.
The NP Ricci coefficients are:
Phi00: -1/4*(y^2-z^2)/z^2/y^2
Phi01: 1/2*I/z/y
Phi02: -1/4*(3*y^2+z^2)/z^2/y^2
Phi10: -1/2*I/z/y
Phi11: 1/2/z^2
Phi12: -1/2*I/z/y
Phi20: -1/4*(3*y^2+z^2)/z^2/y^2
Phi21: 1/2*I/z/y
Phi22: -1/4*(y^2-z^2)/z^2/y^2
The NP coefficients of the Chi spinor are:
Chi0: 1/8*(3*y^4+2*z^2*y^2-z^4)/z^4/y^4
Chi1: 0
Chi2: -1/24*(3*y^4+2*z^2*y^2-z^4)/z^4/y^4
Chi3: 0
Chi4: 1/8*(3*y^4+2*z^2*y^2-z^4)/z^4/y^4
The Petrov-Plebanski type of the given symmetric tensor is "D"
The NP coefficients of the E spinor are:
E00: -1/2*(y^2+z^2)/z^4/y^2
E01: -1/2*I*(y^2+z^2)/z^3/y^3
E02: 3/4*(y^2+z^2)/z^4/y^2
E11: -1/2*(y^2+z^2)/z^4/y^2
E12: 1/2*I*(y^2+z^2)/z^3/y^3
E22: -1/2*(y^2+z^2)/z^4/y^2
The r1 invariant is:
1/12*(9*y^4+10*z^2*y^2+z^4)/z^4/y^4
If r1 = 0, then the Segre invariant is [ZZ(11)]
If r1 <> 0, and the E spinor is 0, then the Segre invariant is [(1,1)(11)]
The tildeChi0 invariant is:
-1/4*(y^2+z^2)^2*(3*y^2-2*z^2)/z^8/y^6
If r1 <> 0, if Chi0 <> 0 and if tildeChi0 = 0, then the Segre invariant is [2,(11)]
The Ip invariant is:
1/144*(3*y^4+2*z^2*y^2-z^4)^2/z^8/y^8
The Jp invariant is:
-1/1728*(3*y^4+2*z^2*y^2-z^4)^3/z^12/y^12
The H invariant is:
1/144*(3*y^4+2*z^2*y^2-z^4)^2/y^10*(y^2+z^2)/z^12
If H = 0, then the Segre invariant is [2,(11)]
If H < 0, then the Segre invariant is [ZZ,(11)]
Unable to evaluate the sign of H
| |
So we see that the invariant vanishes when . Find the values for which vanishes.
Re-calculate the Segre type at points where .
Re-calculate the Segre type at some choice of points where .
Example 6.
With the third calling sequence we can verify algebraic normal forms for the Ricci tensors of each Segre type.
1. Petrov-Plebanski type: "O", Segre Type: "[(1,111)]"
2. Petrov-Plebanski type: "O", Segre Type: "[1,(111)]"
3. Petrov-Plebanski type: "O", Segre Type: "[(1,11)1]"
4. Petrov-Plebanski type: "O", Segre Type: "[2,(11)]"
M >
|
R := evalDG((a + 1)*dt &t dt + dt &t dx + dx &t dt + (-a + 1)*dx &t dx - a*dy &t dy - a*dz &t dz);
|
5. Petrov-Plebanski type: "N", Segre Type: "[(2,1)1]"
6. Petrov-Plebanski type: "N", Segre Type: "[(3,1)]"
7. Petrov-Plebanski type: "D", Segre Type: "[(1,1)11]"
8. Petrov-Plebanski type: "D", Segre Type: "[1,1(11)]"
9. Petrov-Plebanski type: "D", Segre Type: "[ZZ(11)]"
10. Petrov-Plebanski type: "D", Segre Type: "[(1,1)(11)]"
11. Petrov-Plebanski type: "D", Segre Type: "[2,(11)]"
12. Petrov-Plebanski type: "II", Segre Type: "[2,(11)]"
13. Petrov-Plebanski type: "I", Segre Type: "[1,111]"
14. Petrov-Plebanski type: "I", Segre Type: "[ZZ11]"