construct a null vector from a solder form and a rank 1 spinor - Maple Programming Help

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Mathematics : DifferentialGeometry : Tensor : DifferentialGeometry/Tensor/NullVector

Tensor[NullVector] - construct a null vector from a solder form and a rank 1 spinor

Calling Sequences

     NullVector(σ, φ)

     NullVector( σ, φ, ψ)

Parameters

   σ         - a spin-tensor defining a solder form on a 4-dimensional spacetime

   φ, ψ       - rank 1 spinors

 

Description

Examples

See Also

Description

• 

Let g be a metric on a 4-dimensional manifold with signature1, 1, 1, 1.   A null vector X satisfies gX, X = 0.

• 

Let σ be a solder form for the metric g, that is, σ is a rank 3 spin-tensor such that gij = σi AA'σjAA' . The NullVector command accepts, as its first argument, a solder form with either covariant or contravariant tensor and spinor indices.

• 

With two arguments, the NullVector command returns the real vector with components Xi = σiAA'φA φA'

• With three arguments, the NullVector command returns the (complex) vector with components Xi = σiAA'φAψA' .

• 

This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form NullVector(...) only after executing the commands with(DifferentialGeometry); with(Tensor) in that order. It can always be used in the long form DifferentialGeometry:-Tensor:-NullVector.

Examples

withDifferentialGeometry:withTensor:

 

Example 1.

First create the spinor bundle M  with spacetime coordinates t, x, y,  z and fiber coordinates z1, z2, w1,w2.

DGsetupt,x,y,z,z1,z2,w1,w2,M

frame name: M

(2.1)

 

Define a spacetime metric g on M with signature 1, 1, 1, 1.

M > 

gevalDGdt&tdtdx&tdxdy&tdydz&tdz

g:=dtdtdxdxdydydzdz

(2.2)

 

Define an orthonormal tetrad F on M with respect to the metric g. Use the command SolderForm to create a solder form σ.

M > 

FD_t,D_x,D_y,D_z

F:=D_t,D_x,D_y,D_z

(2.3)
M > 

σSolderFormF

σ:=122dtD_z1D_w1+122dtD_z2D_w2+122dxD_z1D_w2+122dxD_z2D_w112I2dyD_z1D_w2+12I2dyD_z2D_w1+122dzD_z1D_w1122dzD_z2D_w2

(2.4)

 

Define rank 1 spinors φ1, φ2 and φ3.

M > 

φ1D_z1

φ1:=D_z1

(2.5)
M > 

φ2evalDGaD_z1+bD_z2

φ2:=aD_z1+bD_z2

(2.6)
M > 

φ3D_w2

φ3:=D_w2

(2.7)

 

Use the command NullVector to find the corrresponding null vectors X, Y, Z.

M > 

XNullVectorσ,φ1

X:=122D_t+122D_z

(2.8)
M > 

YNullVectorσ,φ2assuminga::real,b::real

Y:=122b2+122a2D_t+2abD_x+122b2+122a2D_z

(2.9)
M > 

ZNullVectorσ,φ1,φ3

Z:=122D_x+12I2D_y

(2.10)

 

We can use the command TensorInnerProduct to check that the vectors X, Y, Z are indeed null vectors.

M > 

TensorInnerProductg,X,X

0

(2.11)
M > 

TensorInnerProductg,Y,Y

0

(2.12)
M > 

TensorInnerProductg,Z,Z

0

(2.13)

See Also

DifferentialGeometry, Tensor, NullTetrad,  PrincipalNullDirections, SolderForm,   TensorInnerProduct