CartanMatrix - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


LieAlgebras[CartanMatrix] - find the Cartan matrix for a simple Lie algebra from a root space decomposition, display the Cartan matrix for a given root type

Calling Sequences

     CartanMatrix(SimRts, RSD)

     CartanMatrix(RT, m)

Parameters

SimRts   - a list of column vectors, defining the simple roots of a simple Lie algebra

RSD      - a table, defining the root space decomposition of an initialized Lie algebra

RT       - a string, the root type of a simple Lie algebra "A", "B", "C", "D", "E", "F", "G"

m        - a positive integer, the dimension of the Cartan matrix

  

 

Description

Examples

Description

• 

 Let g be a simple Lie algebra, h a Cartan subalgebra, and the root space decomposition of g with respect to h. Let <⋅,⋅> be the Killing form of g. For each root , there are vectors and  such that and  These conditions uniquely determine The vector  can be computed using the command RootToCartanSubalgebraElementH.

• 

Let be a set of simple roots for g. Then the associated Cartan matrix is the  matrix with entries < , / <,  >. The entries of the Cartan matrix are 0, 1, -1 or 2. The Cartan matrix is independent of the choice of Cartan subalgebra h but is dependent upon the ordering of the simple roots in

• 

The Cartan matrix is the fundamental invariant for semi-simple Lie algebras over C -- two complex semi-simple Lie algebras are isomorphic if and only if their Cartan matrices are the same, modulo a permutation of the vectors in the Cartan subalgebra. The command CartanMatrixToStandardForm will transform a given Cartan matrix to a standard form.

• 

The Cartan matrix encodes the re-construction of the root system of the Lie algebra from its simple roots. See PositiveRoots .

• 

The information contained in the Cartan matrix is also encoded in the Dynkin diagram of the Lie algebra.

• 

The first calling sequence calculates the Cartan matrix of a Lie algebra from a set of simple roots and a root space decomposition.

• 

The second calling sequence displays the standard form of the Cartan matrix for each possible root type of a simple Lie algebra.

Examples

 

Example 1.

We use the command SimpleLieAlgebraData to obtain the Lie algebra data for the Lie algebra . This is the 15-dimensional Lie algebra of trace-free, skew-Hermitian matrices

We suppress the output of this command which is a lengthy list of structure equations.

 

 

Initialize this Lie algebra -- the basis elements are given the default labels

(2.1)

 

We remark that the command StandardRepresentation can be used to explicitly display the matrices defining .

su > 

 

The first 3 matrices define a Cartan subalgebra. We can use the Query command to check this

su > 

(2.2)
su > 

(2.3)

 

We use the command RootSpaceDecomposition to find the root space decomposition for with respect to this Cartan subalgebra.

su > 

(2.4)

 

A choice of simple roots for this root space decomposition is:

su > 

 

This set of simple roots can be determined by the command SimpleRoots. The Cartan matrix for this root space decomposition and choice of simple roots is :

su > 

 

We easily identify this as the standard Cartan matrix for

su > 

 

Notice that a permutation of the simple roots gives a permuted Cartan matrix.

su > 

su > 

 

 

Example 2.

For the exceptional Lie algebras , and there are two different conventions for the Cartan matrix. For  these are:

su > 

 

See Also

DifferentialGeometry

DynkinDiagram

CartanSubalgebra

LieAlgebras

RootSpaceDecomposition

SimpleRoots

 


Download Help Document