Noether - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


JetCalculus[Noether] - find the conservation law for the Euler-Lagrange equations from a given symmetry of the Lagrangian

Calling Sequences

     Noether(X, l)

Parameters

     X         -  a vector field representing a symmetry of the Lagrangian

     λ         - a Lagrangian for a variational principle, defined as a top degree horizontal form of the jet space of a bundle

 

Description

Examples

Description

• 

The celebrated theorem of E. Noether provides a formula for the calculation of a first integral or conservation law for any symmetry of the Lagrangian. This formula, which is very complicated for high order Lagrangians is easily implemented using the horizontal homotopy for the variational bicomplex.

• 

Within the framework of the JetCalculus package conservation laws are represented by differential forms of degree , where  is the dimension of , whose horizontal or total exterior derivative vanishes by virtue of the Euler Lagrange equations.

• 

The vector field  is a symmetry of the Lagrangian  if the Lie derivative of l with respect to the prolongation of  (to the order of λ) vanishes.

• 

The command Noether is part of the DifferentialGeometry:-JetCalculus package. It can be used in the form Noether(...) only after executing the commands with(DifferentialGeometry) and with(JetCalculus), but can always be used by executing DifferentialGeometry:-JetCalculus:-Noether(...).

Examples

with(DifferentialGeometry): with(JetCalculus):

 

Example 1.

We set a simple single integral problem with 2 dependent variables and compute the Euler-Lagrange equations

DGsetup([t], [x,y], E, 2):

E > 

L := 1/2*(x[1]^2 + y[1]^2 -1/sqrt(x[]^2 + y[]^2));

(2.1)
E > 

EL := EulerLagrange(L);

(2.2)
E > 

Eq := solve(EL, {x[1,1], y[1,1]});

(2.3)

 

The Lagrangian  is invariant under rotations in the  plane. Let us check this. To be technically correct we should work with the differential 1-form  defined by .

E > 

lambda := L &mult Dt;

(2.4)
E > 

X:= x[]*D_y[] - y[]*D_x[];

(2.5)
E > 

X1:= Prolong(X,1);

(2.6)
E > 

LieDerivative(X, lambda);

(2.7)

Now we find the first integral associated to the symmetry :

E > 

F :=Noether(X, lambda);

(2.8)

 

To check that this is indeed a first integral, take the total derivative of  with respect to  and substitute from the Euler-Lagrange equations.

E > 

tdF := TotalDiff(F, t);

(2.9)
E > 

eval(tdF, Eq);

(2.10)

 

 

Example 2.

We use the command InfinitesimalSymmetriesOfGeometricObjectFields to find the symmetries of the Lagrangian for the wave equation in (2+1) dimensions.

We then use the command Noether to calculate the associated conservation laws.

E > 

with(GroupActions):

E > 

DGsetup([x, y, t], [u], J, 1);

(2.11)
J > 

lambda := evalDG((u[1]^2 + u[2]^2 - u[3]^2)*Dx &w Dy &w Dt);

(2.12)
J > 

Gamma := InfinitesimalSymmetriesOfGeometricObjectFields([lambda], output="list");

(2.13)

 

Let us find the conservation law  associated to the symmetry of infinitesimal translations in the dependent variable . We check the horizontal exterior derivative of  vanishes on solutions to the 2+1 wave equation.

J > 

X1 := D_u[];

(2.14)
J > 

omega1 := Noether(X1, lambda);

(2.15)
J > 

HorizontalExteriorDerivative(omega1);

(2.16)

 

Let us find the conservation law  associated to the symmetry of infinitesimal scaling of the independent and dependent variables. We check the horizontal exterior derivative of  vanishes on solutions to the 2+1 wave equation.

J > 

X2 := evalDG(x*D_x +y*D_y +t*D_t -1/2*u[]*D_u[]);

(2.17)
J > 

omega2 := Noether(X2, lambda);

J > 

HorizontalExteriorDerivative(omega1);

(2.18)
J > 

factor(HorizontalExteriorDerivative(omega2));

(2.19)

 

Finally, let us find the conservation law  associated to the symmetry of infinitesimal boosts in the independent variables  and . We check that the horizontal exterior derivative of  vanishes on solutions to the 2+1 wave equation.

J > 

X3 := evalDG(x*D_t +t*D_x);

(2.20)
J > 

omega3 := Noether(X3, lambda);

(2.21)
J > 

factor(HorizontalExteriorDerivative(omega3));

(2.22)

 

See Also

DifferentialGeometry

JetCalculus

EulerLagrange

HorizontalExteriorDerivative

InfinitesimalSymmetriesOfGeometricObjectFields

Prolong

TotalDiff

 


Download Help Document