>
|
with(DifferentialGeometry): with(JetCalculus):
|
Example 1.
Create the jet space with independent variables and dependent variable .
>
|
DGsetup([x, y], [u], E1, 2):
|
Apply the higher Euler operators to F.
E1 >
|
EulerF := expand(HigherEulerOperators(F));
|
To interpret this result we first list the current jet coordinates.
E1 >
|
Vars := Tools:-DGinfo(E1, "FrameJetVariables");
|
Then the various components of the higher Euler operators for F will be labeled by these jet coordinates as:
E1 >
|
Eu[0, 0] := EulerF[3]; Eu[1, 0] := EulerF[4]; Eu[0, 1] := EulerF[5]; Eu[2, 0] := EulerF[6]; Eu[1, 1] := EulerF[7]; Eu[0, 2] := EulerF[8];
|
Example 2.
Create the jet space with independent variables and dependent variables
E1 >
|
DGsetup([x, y], [u, v], E2, 1):
|
Apply the higher Euler operators to G.
E2 >
|
EulerG := expand(HigherEulerOperators(G));
|
To interpret this result we first list the current jet coordinates.
E2 >
|
Vars := Tools:-DGinfo(E2, "FrameJetVariables");
|
Then the various components of the higher Euler operators for G will be labeled by these jet coordinates as:
E2 >
|
Eu[0, 0] := EulerG[3]; Ev[0, 0] := EulerG[4]; Eu[1, 0] := EulerF[5]; Eu[0, 1] := EulerF[6]; Ev[1, 0] := EulerF[7]; Ev[0, 1] := EulerF[8];
|
Example 3.
Create the jet space with independent variable and dependent variable .
E2 >
|
DGsetup([x], [u], E3, 3):
|
E3 >
|
H := TotalDiff(u[]*u[1]^2, [1,1,1]);
|
Because H is a 3-fold total derivative, the first 3 Euler operators will vanish.
E3 >
|
EulerG := expand(HigherEulerOperators(H));
|
Example 4.
Create the jet space with independent variables and dependent variable .
E3 >
|
DGsetup([x, y], [u], E1, 2):
|
Calculate the higher Euler operators for .
E1 >
|
omega1 := evalDG(Cu[1] &w Cu[2, 2]);
|
E1 >
|
HigherEulerOperators(omega1);
|
Calculate the higher Euler operators for .
E1 >
|
omega2 := evalDG(Cu[1] &w Cu[2, 2] &w Dx);
|
E1 >
|
HigherEulerOperators(omega2);
|