HigherEulerOperators - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


JetCalculus[HigherEulerOperators] - apply the higher Euler operators to a function or a differential bi-form

Calling Sequences

     HigherEulerOperators(F)

     HigherEulerOperators()

Parameters

     F         - a function on the jet space of a fiber bundle

              - a differential bi-form on the jet space a fiber bundle

 

Description

Examples

Description

• 

Let  be a fiber bundle, with base dimension  and fiber dimension  and let  be the -th jet bundle. Introduce local coordinates , ..., where, as usual, if  is a section andis the -jet of then

   and dim.

• 

The higher Euler operators are generalizations of the Euler-Lagrange operators and arise in many formulas in the variational calculus for higher order variational problems. They can be defined as follows. Let be a function on Let  be a multi-index. Then the -th order higher Euler operator is defined by

 

 

If is a differential bi-form on then the Euler operators are defined by

 

  ,  

where denotes interior product with the vector field  .

• 

The first calling sequence HigherEulerOperators(F) returns a list of the higher Euler operators of the function F. Each element of the list is a function on jet spaces. The length of the list equals the fiber dimension of the jet bundle , where is the order of F.

• 

The second calling sequence HigherEulerOperators() returns a list of the higher Euler operators of . Each element of the list is a differential form on jet space. The length of the list equals the fiber dimension of the jet bundle on which is defined.

• 

Higher Euler operators are studied in detail in S. J. Aldersley Higher Euler operators and some of their applications, J. Math Phys. 20 (1979) 522-531. We mention two important properties. First, ifand  are two functions on jet space, the product rule for the Euler-Lagrange operator is given in terms of the higher Euler operators by

Second, a function  on jet space may be expressed as an -fold total derivative if and only if  = 0 for all multi-indices with length

• 

The command HigherEulerOperators is part of the DifferentialGeometry:-JetCalculus package. It can be used in the form HigherEulerOperators(...) only after executing the commands with(DifferentialGeometry) and with(JetCalculus), but can always be used by executing DifferentialGeometry:-JetCalculus:-HigherEulerOperators(...).

Examples

with(DifferentialGeometry): with(JetCalculus):

 

Example 1.

Create the jet space with independent variables  and dependent variable .

DGsetup([x, y], [u], E1, 2):

E1 > 

F := u[1]*u[2,2]^2;

(2.1)

 

Apply the higher Euler operators to F.

E1 > 

EulerF := expand(HigherEulerOperators(F));

(2.2)

 

To interpret this result we first list the current jet coordinates.

E1 > 

Vars := Tools:-DGinfo(E1, "FrameJetVariables");

(2.3)

 

Then the various components of the higher Euler operators for F will be labeled by these jet coordinates as:

E1 > 

Eu[0, 0] := EulerF[3]; Eu[1, 0] := EulerF[4]; Eu[0, 1] := EulerF[5]; Eu[2, 0] := EulerF[6]; Eu[1, 1] := EulerF[7]; Eu[0, 2] := EulerF[8];

(2.4)

 

Example 2.

Create the jet space with independent variables  and dependent variables

E1 > 

DGsetup([x, y], [u, v], E2, 1):

E2 > 

G := u[1]*v[2]^2;

(2.5)

 

Apply the higher Euler operators to G.

E2 > 

EulerG := expand(HigherEulerOperators(G));

(2.6)

 

To interpret this result we first list the current jet coordinates.

E2 > 

Vars := Tools:-DGinfo(E2, "FrameJetVariables");

(2.7)

 

Then the various components of the higher Euler operators for G will be labeled by these jet coordinates as:

E2 > 

Eu[0, 0] := EulerG[3]; Ev[0, 0] := EulerG[4]; Eu[1, 0] := EulerF[5]; Eu[0, 1] := EulerF[6]; Ev[1, 0] := EulerF[7]; Ev[0, 1] := EulerF[8];

(2.8)

 

Example 3.

Create the jet space  with independent variable and dependent variable .

E2 > 

DGsetup([x], [u], E3, 3):

E3 > 

H := TotalDiff(u[]*u[1]^2, [1,1,1]);

(2.9)

 

Because H is a 3-fold total derivative, the first 3 Euler operators will vanish.

E3 > 

EulerG := expand(HigherEulerOperators(H));

(2.10)

 

Example 4.

Create the jet space with independent variables  and dependent variable .

E3 > 

DGsetup([x, y], [u], E1, 2):

 

Calculate the higher Euler operators for .

E1 > 

omega1 := evalDG(Cu[1] &w Cu[2, 2]);

(2.11)
E1 > 

HigherEulerOperators(omega1);

(2.12)

 

Calculate the higher Euler operators for .

E1 > 

omega2 := evalDG(Cu[1] &w Cu[2, 2] &w Dx);

(2.13)
E1 > 

HigherEulerOperators(omega2);

(2.14)

See Also

DifferentialGeometry

JetCalculus

DGinfo

Prolong

Pullback

TotalDiff

Transformation

 


Download Help Document