ODE Steps for Cauchy-Euler Equations
Overview
Examples
This help page gives a few examples of using the command ODESteps to solve Cauchy-Euler equations.
See Student[ODEs][ODESteps] for a general description of the command ODESteps and its calling sequence.
withStudent:-ODEs:
ode1≔x2diffyx,x,x−4xdiffyx,x+2yx=0
ode1≔x2ⅆ2ⅆx2yx−4xⅆⅆxyx+2yx=0
ODEStepsode1
Let's solvex2ⅆ2ⅆx2yx−4xⅆⅆxyx+2yx=0•Highest derivative means the order of the ODE is2ⅆ2ⅆx2yx•Isolate 2nd derivativeⅆ2ⅆx2yx=−2yxx2+4ⅆⅆxyxx•Group terms withyxon the lhs of the ODE and the rest on the rhs of the ODE; ODE is linearⅆ2ⅆx2yx−4ⅆⅆxyxx+2yxx2=0•Multiply by denominators of the ODEx2ⅆ2ⅆx2yx−4xⅆⅆxyx+2yx=0•Make a change of variablest=lnx▫Substitute the change of variables back into the ODE◦Calculate the1stderivative ofywith respect tox, using the chain ruleⅆⅆxyx=ⅆⅆtytⅆⅆxtx◦Compute derivativeⅆⅆxyx=ⅆⅆtytx◦Calculate the2ndderivative ofywith respect tox, using the chain ruleⅆ2ⅆx2yx=ⅆ2ⅆt2ytⅆⅆxtx2+ⅆ2ⅆx2txⅆⅆtyt◦Compute derivativeⅆ2ⅆx2yx=ⅆ2ⅆt2ytx2−ⅆⅆtytx2Substitute the change of variables back into the ODEx2ⅆ2ⅆt2ytx2−ⅆⅆtytx2−4ⅆⅆtyt+2yt=0•Simplifyⅆ2ⅆt2yt−5ⅆⅆtyt+2yt=0•Characteristic polynomial of ODEr2−5r+2=0•Use quadratic formula to solve forrr=5±172•Roots of the characteristic polynomialr=52−172,52+172•1st solution of the ODEy1t=ⅇ52−172t•2nd solution of the ODEy2t=ⅇ52+172t•General solution of the ODEyt=C1y1t+C2y2t•Substitute in solutionsyt=C1ⅇ52−172t+C2ⅇ52+172t•Change variables back usingt=lnxyx=C1ⅇ52−172lnx+C2ⅇ52+172lnx•Simplifyyx=x52x−172C1+x172C2
ode2≔x3diffyx,x,x,x+3x2diffyx,x,x−6xdiffyx,x−6yx=0
ode2≔x3ⅆ3ⅆx3yx+3x2ⅆ2ⅆx2yx−6xⅆⅆxyx−6yx=0
ODEStepsode2
See Also
diff
Int
Student
Student[ODEs]
Student[ODEs][ODESteps]
Download Help Document