GroupTheory
ChevalleyE
Calling Sequence
Parameters
Description
Examples
Compatibility
ChevalleyE6( q )
ChevalleyE7( q )
ChevalleyE8( q )
q
-
algebraic; an algebraic expression, taken to be a prime power
The Chevalley groups E6q , E7q and E8q , for a prime power q, are exceptional simple groups of Lie type.
The ChevalleyE6( q ) command returns a symbolic group representing the group E6q .
The ChevalleyE7( q ) command returns a symbolic group representing the group E7q .
The ChevalleyE8( q ) command returns a symbolic group representing the group E8q .
withGroupTheory:
G≔ChevalleyE62
G≔E62
GroupOrderG
214841575522005575270400
IsSimpleG
true
G≔ChevalleyE78
G≔E78
1270946186620423928101048723119547553777696702476219304626523381888123219216468469857197348448137087576946470151415398400
MinPermRepDegreeG
2763174708875728600952247
IsPerfectG
G≔ChevalleyE83
G≔E83
18830052912953932311099032439972660332140886784940152038522449391826616580150109878711243949982163694448626420940800000
ClassNumberG
12825
IsSolubleG
false
The GroupTheory[ChevalleyE] command was introduced in Maple 2021.
For more information on Maple 2021 changes, see Updates in Maple 2021.
See Also
GroupTheory[ChevalleyF4]
GroupTheory[ChevalleyG2]
GroupTheory[ExceptionalGroup]
Download Help Document