ProjectedPullback - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


JetCalculus[ProjectedPullback] - pullback a differential bi-form of type (r, s) by a transformation to a differential bi-form of type (r, s)

Calling Sequences

     ProjectedPullback(, )

Parameters

         - a transformation between two jet spaces

     - a differential bi-form of type defined on the range jet space of

 

Description

Examples

Description

• 

Let be a fiber bundle, with base dimension  and fiber dimension  and let be the -th jet bundle of . The space of -forms  decomposes into a direct sum, where is the space of bi-forms of horizontal degree  and vertical degree The precise definition of the space is given in the help page for the horizontal exterior derivative. If , then let denote the type component of in the decomposition (*). The command convert/DGbifom calculates the various bi-graded components of a form .Let be another fiber bundle and let . Let be a differential bi-form of type on . Then the projected pullback of is denote by and defined by .

• 

 Two special cases of this general definition should be noted.

[i]  If  is the prolongation of a projectable transformation from to, then the pullback  is a bi-degree preserving transformation, that is, if be a differential bi-form of type on , then  is a differential bi-form of type on Hence .

[ii] Suppose that  is the prolongation of a point transformation, a contact transformation, a differential substitution or a generalized differential substitution. (See AssignTransformationType for the definitions of these different types of transformations.) Then if is a differential bi-form of type on , where  is a bi-form of degree  on . In these cases the command ProjectedPullback( ) returns the type bi-form . 

• 

Use ProjectedPullback to transform a Lagrangian bi-form to a new Lagrangian bi-form using any of the above transformations.

• 

The command ProjectedPullback is part of the DifferentialGeometry:-JetCalculus package.  It can be used in the form ProjectedPullback(...) only after executing the commands with(DifferentialGeometry) and with(JetCalculus), but can always be used by executing DifferentialGeometry:-JetCalculus:-ProjectedPullback(...).

Examples

 

First initialize several different jet spaces over bundles , . The dimension of the base spaces are dim() =2, dim() =1, dim() =3.

 

Example 1.

Define a transformation . This transformation is a projectable transformation and therefore pullbacks by the prolongation of can be calculated directly using the Pullback command.

E3 > 

(2.1)
E1 > 

(2.2)
E1 > 

(2.3)

 

Pullback the contact 1-form Cv[1] on to a contact form on -- this can be done with either the Pullback command or the ProjectedPullback command.

E1 > 

(2.4)
E1 > 

(2.5)

 

Example 2

Define a point transformation  and prolong it to a transformation .

E1 > 

(2.6)
E1 > 

(2.7)

 

Calculate the projected pullback of the type (1, 0) form .

E1 > 

(2.8)

 

Calculate the projected pullback of the type (1, 1) form .

E1 > 

(2.9)
E3 > 

(2.10)

 

To illustrate the definition of the projected pullback we re-derive this result using the usual Pullback command. First convert  from a bi-form to a form .

E1 > 

(2.11)

 

Then pullback using

E3 > 

(2.12)

 

Then convert back to a bi-form and take the type [1, 1] part.

E1 > 

(2.13)

 

Example 3

Define a differential substitution and prolong it to a transformation .

E1 > 

(2.14)
E2 > 

(2.15)

 

Calculate the projected pullback of the type (1, 0) form

E2 > 

(2.16)

 

Calculate the projected pullback of the type (1, 0) form

E2 > 

(2.17)

See Also

DifferentialGeometry

JetCalculus

DGinfo

Prolong

Pullback

PushforwardTotalVector

Transformation

 


Download Help Document