 
													Maple
Logiciel de mathématiques puissant facile à utiliser
• Maple Académique • Maple Edition Étudiant • Maple Learn • Maple Calculator App • Maple pour l’industrie et le gouvernement • Edition personnelle Maple 
													
													Add-ons Maple
• E-Books & Guides d'étude • Boîte à outils et add-ons Maple • MapleNet • Maple Player gratuit 
                                                    Student Success Platform
Améliorer les taux de retention
Maple Flow
Engineering calculations & documentation
• Maple Flow • Maple Flow Migration Assistant 
                                                    
 
                             
													  
													  
                                                     
                                                     
													 
                            


 

![int(abs(`+`(exp(`*`(`*`(2, `*`(I)), `*`(Pi, `*`(x)))), exp(`*`(`*`(2, `*`(I)), `*`(Pi, `*`(y)))))), [x = 0 .. 1, y = 0 .. 1])](AdvancedMath/AdvancedMath_5.gif) 

 

 

 






 

 


 

 

 

 

 

 
 
![Typesetting:-mprintslash([f := `+`(`*`(`^`(w, 5)), `*`(`^`(w, 2), `*`(x)), `*`(`^`(y, 3)), `*`(w, `*`(y)))], [`+`(`*`(`^`(w, 5)), `*`(`^`(w, 2), `*`(x)), `*`(`^`(y, 3)), `*`(w, `*`(y)))])](AdvancedMath/AdvancedMath_35.gif)
 

 
![Typesetting:-mprintslash([g := `+`(`*`(`^`(w, 5)), `*`(`^`(w, 2), `*`(x, `*`(`^`(z, 2)))), `*`(w, `*`(y, `*`(`^`(z, 3)))), `*`(`^`(y, 3), `*`(`^`(z, 2))))], [`+`(`*`(`^`(w, 5)), `*`(`^`(w, 2), `*`(x, ...](AdvancedMath/AdvancedMath_39.gif)
 

![Homogenize(f, z, [w, x], [1, 2])](AdvancedMath/AdvancedMath_42.gif) 

 
![Typesetting:-mprintslash([PIECEWISE([FAIL, b = 0], [`/`(1, `*`(b)), And(x = 0, `<>`(b, 0))], [PIECEWISE([FAIL, (`+`(1, b))::nonposint], [LerchPhi(x, 1, b), And(`<=`(abs(x), 1), `<>`(x, 1), (`+`(1, b))...](AdvancedMath/AdvancedMath_45.gif)
 

 

 
![Typesetting:-mprintslash([f := `+`(`*`(`^`(x, 3)), `*`(`^`(x, 2), `*`(`^`(2, `/`(1, 2)))), `*`(`^`(x, 2)), `*`(`^`(2, `/`(1, 2)), `*`(x)), `-`(`*`(4, `*`(x))), `-`(4))], [`+`(`*`(`^`(x, 3)), `*`(`^`(x...](AdvancedMath/AdvancedMath_51.gif)
 

 

 

 

, `^`(I, x)])], [x::real])](AdvancedMath/AdvancedMath_60.gif) 
![[`^`(-1, x), `^`(I, x)]](AdvancedMath/AdvancedMath_61.gif)
))), `^`(I, `+`(`*`(2, `*`(x)), 1))])], [x::even])](AdvancedMath/AdvancedMath_62.gif) 
![[1, I]](AdvancedMath/AdvancedMath_63.gif)
))), `^`(I, `+`(`*`(2, `*`(x)), 1))])], [x::odd])](AdvancedMath/AdvancedMath_64.gif) 
![[-1, `+`(`-`(I))]](AdvancedMath/AdvancedMath_65.gif)


 

![`assuming`([is(`>`(`+`(`-`(`*`(`+`(I), `*`(`^`(I, `+`(`*`(2, `*`(n)), 1)))))), 0))], [n::even])](AdvancedMath/AdvancedMath_73.gif) 

![`assuming`([is(`>=`(`+`(arccosh(x), `-`(`*`(`+`(I), `*`(Pi)))), 0))], [`<`(x, -1)])](AdvancedMath/AdvancedMath_75.gif) 

![`assuming`([is(`^`(z, n), imaginary)], [z::imaginary, n::integer, (`^`(z, n))::(Non(real))])](AdvancedMath/AdvancedMath_77.gif) 

![`assuming`([map2(coulditbe, p, [-1, 1])], [`<`(-1, p), `<`(-1, q), `<`(-1, r), `<`(-1, `+`(p, q)), `<`(-1, `+`(p, r)), `<`(-1, `+`(r, q)), `<`(-1, `+`(p, q, r))])](AdvancedMath/AdvancedMath_79.gif) 
![[false, true]](AdvancedMath/AdvancedMath_80.gif)
![`assuming`([Im(z1)], [`>`(z, 0), `<`(z, 1), z1 = arccosh(z)])](AdvancedMath/AdvancedMath_81.gif) 

![([Re, Im])(`*`(I, `*`(GAMMA(`+`(`/`(3, 2), `-`(`*`(`+`(`*`(`/`(1, 2), `*`(I))), `*`(sqrt(3)))))), `*`(GAMMA(`+`(`/`(3, 2), `*`(`*`(`/`(1, 2), `*`(I)), `*`(sqrt(3)))))))))](AdvancedMath/AdvancedMath_83.gif) 
![[0, `*`(GAMMA(`+`(`/`(3, 2), `-`(`*`(`+`(`*`(`/`(1, 2), `*`(I))), `*`(`^`(3, `/`(1, 2))))))), `*`(GAMMA(`+`(`/`(3, 2), `*`(`*`(`/`(1, 2), `*`(I)), `*`(`^`(3, `/`(1, 2))))))))]](AdvancedMath/AdvancedMath_84.gif)
 

 

 

![`assuming`([arctan(`/`(`*`(`+`(b, sqrt(`+`(`*`(`^`(a, 2)), `*`(`^`(b, 2)))))), `*`(a)))], [`>`(a, 0), `>`(b, 0)])](AdvancedMath/AdvancedMath_91.gif) 

![`assuming`([arctan(`+`(t, sqrt(`+`(`*`(`^`(t, 2)), 1))))], [`>`(t, 0)])](AdvancedMath/AdvancedMath_93.gif) 

 

 

![`assuming`([combine(expand(`+`(`/`(`*`(arctan(b)), `*`(Pi)), `-`(`/`(`*`(2, `*`(arctan(`+`(b, sqrt(`+`(`*`(`^`(b, 2)), 1)))))), `*`(Pi))))))], [`<`(0, b)])](AdvancedMath/AdvancedMath_99.gif) 

 We can use first use SMTLIB[Satisfiable] to verify that a solution exists:
We can use first use SMTLIB[Satisfiable] to verify that a solution exists:](AdvancedMath/AdvancedMath_102.gif) 


 

](AdvancedMath/AdvancedMath_107.gif) 

), `<`(x, 5)), `>`(y, -5)), `<`(y, 5)))](AdvancedMath/AdvancedMath_109.gif) 

![display(inequal(sys, x = -5 .. 5, y = -5 .. 5), pointplot([eval([x, y], pt)], symbol = solidcircle, symbolsize = 25, color = red)); 1](AdvancedMath/AdvancedMath_111.gif) 

![GeneralizedPolylog([`$`(a[i], `=`(i, 1 .. w))], x) = %int(`/`(GeneralizedPolylog([`$`(a[i], `=`(i, 2 .. w))], y), `-`(y, a[1])), `=`(y, 0 .. x))](AdvancedMath/AdvancedMath_113.gif) 
 ![GeneralizedPolylog([], x) = 1](AdvancedMath/AdvancedMath_114.gif) 
 ![a[i]](AdvancedMath/AdvancedMath_115.gif) indices being zero, an alternative definition is used, as
 indices being zero, an alternative definition is used, as
   ![GeneralizedPolylog([`$`(0, w)], x) = `/`(`*`(`^`(ln(x), n)), `*`(factorial(n)))](AdvancedMath/AdvancedMath_116.gif) 
  
 ![MultiPolylog(`$`(m[i], `=`(i, 1 .. n)), `$`(z[i], `=`(i, 1 .. n))) = %sum(Multiply(`$`(`/`(`^`(z[j], i[j]), `^`(i[j], m[j])), `=`(j, 1 .. n))), i)](AdvancedMath/AdvancedMath_118.gif) 
 ![product(a[j], j = 1 .. n)](AdvancedMath/AdvancedMath_119.gif) 
 ![`<`(abs(z[1]), 1), `<`(abs(`*`(z[1], `*`(z[2]))), 1), () .. (), `<`(abs(%product(z[i], `=`(i, 1 .. n))), 1)](AdvancedMath/AdvancedMath_120.gif) 
 
![MultiZeta(`$`(m[i], `=`(i, 1 .. n))) = %sum(Multiply(`$`(`/`(1, `^`(i[j], m[j])), `=`(j, 1 .. n))), i)](AdvancedMath/AdvancedMath_122.gif)
 , in which case the function diverges.
, in which case the function diverges.
   
![%GeneralizedPolylog([0], x) = GeneralizedPolylog([0], x); 1](AdvancedMath/AdvancedMath_125.gif)
![%GeneralizedPolylog([0], x) = ln(x)](AdvancedMath/AdvancedMath_126.gif)
![%GeneralizedPolylog([0, 0, 0, 0, 1], x) = GeneralizedPolylog([0, 0, 0, 0, 1], x); 1](AdvancedMath/AdvancedMath_127.gif)
![%GeneralizedPolylog([0, 0, 0, 0, 1], x) = `+`(`-`(polylog(5, x)))](AdvancedMath/AdvancedMath_128.gif)
![(%MultiPolylog = MultiPolylog)([2, 3, 4, 5], [1, 1, 1, 1]); 1](AdvancedMath/AdvancedMath_129.gif)
![%MultiPolylog([2, 3, 4, 5], [1, 1, 1, 1]) = MultiZeta(2, 3, 4, 5)](AdvancedMath/AdvancedMath_130.gif)
![(%MultiPolylog = MultiPolylog)([2, 1, 1], [1, -1, -1])](AdvancedMath/AdvancedMath_131.gif)
![%MultiPolylog([2, 1, 1], [1, -1, -1]) = `+`(`*`(`/`(1, 8), `*`(`^`(ln(2), 2), `*`(`^`(Pi, 2)))), `-`(`*`(`/`(7, 288), `*`(`^`(Pi, 4)))), `*`(3, `*`(polylog(4, `/`(1, 2)))), `*`(`/`(1, 8), `*`(`^`(ln(2...](AdvancedMath/AdvancedMath_132.gif)
![(%MultiPolylog = MultiPolylog)([2, 1], [1, x])](AdvancedMath/AdvancedMath_133.gif)
![%MultiPolylog([2, 1], [1, x]) = `+`(`*`(polylog(2, `+`(1, `-`(x))), `*`(ln(`+`(1, `-`(x))))), `-`(polylog(3, x)), `-`(`*`(2, `*`(polylog(3, `+`(1, `-`(x)))))), `*`(2, `*`(Zeta(3))))](AdvancedMath/AdvancedMath_134.gif)
![(%GeneralizedPolylog = GeneralizedPolylog)([0, 1, 1], x)](AdvancedMath/AdvancedMath_135.gif)
![%GeneralizedPolylog([0, 1, 1], x) = `+`(`-`(polylog(3, `+`(1, `-`(x)))), `*`(polylog(2, `+`(1, `-`(x))), `*`(ln(`+`(1, `-`(x))))), `*`(`/`(1, 2), `*`(ln(x), `*`(`^`(ln(`+`(1, `-`(x))), 2)))), Zeta(3))](AdvancedMath/AdvancedMath_136.gif)
![GeneralizedPolylog([`+`(.23, `-`(`*`(1.78, `*`(I)))), `+`(1.99, `*`(3.33, `*`(I))), `+`(.77, `*`(0.9e-1, `*`(I)))], `+`(1.35, `-`(`*`(1.01, `*`(I)))))](AdvancedMath/AdvancedMath_137.gif)
![GeneralizedPolylog([`+`(.23, `-`(`*`(1.78, `*`(I)))), `+`(1.99, `*`(3.33, `*`(I))), `+`(.77, `*`(0.9e-1, `*`(I)))], `+`(1.35, `-`(`*`(1.01, `*`(I)))))](AdvancedMath/AdvancedMath_138.gif)
![GeneralizedPolylog([`*`(`+`(.23, `-`(`*`(1.78, `*`(I)))), `*`(z)), `*`(`+`(1.99, `*`(3.33, `*`(I))), `*`(z)), `*`(`+`(.77, `*`(0.9e-1, `*`(I))), `*`(z))], `*`(`+`(1.35, `-`(`*`(1.01, `*`(I)))), `*`(z)...](AdvancedMath/AdvancedMath_139.gif)
![GeneralizedPolylog([`*`(`+`(.23, `-`(`*`(1.78, `*`(I)))), `*`(z)), `*`(`+`(1.99, `*`(3.33, `*`(I))), `*`(z)), `*`(`+`(.77, `*`(0.9e-1, `*`(I))), `*`(z))], `*`(`+`(1.35, `-`(`*`(1.01, `*`(I)))), `*`(z)...](AdvancedMath/AdvancedMath_140.gif)
![GeneralizedPolylog([`+`(.23, `-`(`*`(1.78, `*`(I)))), `+`(1.99, `*`(3.33, `*`(I))), `+`(.77, `*`(0.9e-1, `*`(I)))], `+`(1.35, `-`(`*`(1.01, `*`(I)))))](AdvancedMath/AdvancedMath_141.gif) and
 and ![GeneralizedPolylog([`*`(`+`(.23, `-`(`*`(1.78, `*`(I)))), `*`(z)), `*`(`+`(1.99, `*`(3.33, `*`(I))), `*`(z)), `*`(`+`(.77, `*`(0.9e-1, `*`(I))), `*`(z))], `*`(`+`(1.35, `-`(`*`(1.01, `*`(I)))), `*`(z)...](AdvancedMath/AdvancedMath_142.gif) up to 8 digits
 up to 8 digits
  ))), `+`(1.99, `*`(3.33, `*`(I))), `+`(.77, `*`(0.9e-1, `*`(I)))], `+`(1.35, `-`(`*`(1.01, `*`(I))))) = GeneralizedPolylog([`*`(`+`(.23, ...](AdvancedMath/AdvancedMath_143.gif)
))), `+`(1.99, `*`(3.33, `*`(I))), `+`(.77, `*`(0.9e-1, `*`(I)))], `+`(1.35, `-`(`*`(1.01, `*`(I))))) = GeneralizedPolylog([`*`(`+`(.23, ...](AdvancedMath/AdvancedMath_144.gif)

![`*`(GeneralizedPolylog([`+`(.23, `-`(`*`(1.78, `*`(I))))], `+`(1.35, `-`(`*`(1.01, `*`(I))))), `*`(GeneralizedPolylog([`+`(1.99, `*`(3.33, `*`(I))), `+`(.77, `*`(0.9e-1, `*`(I)))], `+`(1.35, `-`(`*`(1...](AdvancedMath/AdvancedMath_146.gif)
![`*`(`+`(`-`(.2780299456), `-`(`*`(1.097010462, `*`(I)))), `*`(GeneralizedPolylog([`+`(1.99, `*`(3.33, `*`(I))), `+`(.77, `*`(0.9e-1, `*`(I)))], `+`(1.35, `-`(`*`(1.01, `*`(I)))))))](AdvancedMath/AdvancedMath_147.gif)
![`+`(GeneralizedPolylog([`+`(.23, `-`(`*`(1.78, `*`(I)))), `+`(1.99, `*`(3.33, `*`(I))), `+`(.77, `*`(0.9e-1, `*`(I)))], `+`(1.35, `-`(`*`(1.01, `*`(I))))), GeneralizedPolylog([`+`(1.99, `*`(3.33, `*`(...](AdvancedMath/AdvancedMath_148.gif)
![`+`(GeneralizedPolylog([`+`(.23, `-`(`*`(1.78, `*`(I)))), `+`(1.99, `*`(3.33, `*`(I))), `+`(.77, `*`(0.9e-1, `*`(I)))], `+`(1.35, `-`(`*`(1.01, `*`(I))))), GeneralizedPolylog([`+`(1.99, `*`(3.33, `*`(...](AdvancedMath/AdvancedMath_149.gif)
![`+`(GeneralizedPolylog([`+`(.23, `-`(`*`(1.78, `*`(I)))), `+`(1.99, `*`(3.33, `*`(I))), `+`(.77, `*`(0.9e-1, `*`(I)))], `+`(1.35, `-`(`*`(1.01, `*`(I))))), GeneralizedPolylog([`+`(1.99, `*`(3.33, `*`(...](AdvancedMath/AdvancedMath_150.gif)
![`+`(GeneralizedPolylog([`+`(.23, `-`(`*`(1.78, `*`(I)))), `+`(1.99, `*`(3.33, `*`(I))), `+`(.77, `*`(0.9e-1, `*`(I)))], `+`(1.35, `-`(`*`(1.01, `*`(I))))), GeneralizedPolylog([`+`(1.99, `*`(3.33, `*`(...](AdvancedMath/AdvancedMath_151.gif)
, `-`(`*`(1.097010462, `*`(I)))), `*`(GeneralizedPolylog([`+`(1.99, `*`(3.33, `*`(I))), `+`(.77, `*`(0.9e-1, `*`(I)))], `+`(1.35, `-`(`*`(1.01, `*`(I))))))) = `+`(Gene...](AdvancedMath/AdvancedMath_152.gif)
![`*`(%MultiPolylog([2], [`+`(.98, `-`(`*`(.11, `*`(I))))]), `*`(%MultiPolylog([3], [`+`(2.77, `-`(`*`(1.04, `*`(I))))])))](AdvancedMath/AdvancedMath_154.gif)
![`*`(%MultiPolylog([2], [`+`(.98, `-`(`*`(.11, `*`(I))))]), `*`(%MultiPolylog([3], [`+`(2.77, `-`(`*`(1.04, `*`(I))))])))](AdvancedMath/AdvancedMath_155.gif)
![`+`(%MultiPolylog([2, 3], [`+`(.98, `-`(`*`(.11, `*`(I)))), `+`(2.77, `-`(`*`(1.04, `*`(I))))]), %MultiPolylog([3, 2], [`+`(2.77, `-`(`*`(1.04, `*`(I)))), `+`(.98, `-`(`*`(.11, `*`(I))))]), %MultiPoly...](AdvancedMath/AdvancedMath_156.gif)
![`+`(%MultiPolylog([2, 3], [`+`(.98, `-`(`*`(.11, `*`(I)))), `+`(2.77, `-`(`*`(1.04, `*`(I))))]), %MultiPolylog([3, 2], [`+`(2.77, `-`(`*`(1.04, `*`(I)))), `+`(.98, `-`(`*`(.11, `*`(I))))]), %MultiPoly...](AdvancedMath/AdvancedMath_157.gif)
![`+`(%MultiPolylog([2, 3], [`+`(.98, `-`(`*`(.11, `*`(I)))), `+`(2.77, `-`(`*`(1.04, `*`(I))))]), %MultiPolylog([3, 2], [`+`(2.77, `-`(`*`(1.04, `*`(I)))), `+`(.98, `-`(`*`(.11, `*`(I))))]), %MultiPoly...](AdvancedMath/AdvancedMath_158.gif)
![`+`(%MultiPolylog([2, 3], [`+`(.98, `-`(`*`(.11, `*`(I)))), `+`(2.77, `-`(`*`(1.04, `*`(I))))]), %MultiPolylog([3, 2], [`+`(2.77, `-`(`*`(1.04, `*`(I)))), `+`(.98, `-`(`*`(.11, `*`(I))))]), %MultiPoly...](AdvancedMath/AdvancedMath_159.gif)
)))]), `*`(%MultiPolylog([3], [`+`(2.77, `-`(`*`(1.04, `*`(I))))]))) = `+`(%MultiPolylog([2, 3], [`+`(.98, `-`(`*`(.11, `*`(I)))), `+...](AdvancedMath/AdvancedMath_160.gif)








![(%MultiPolylog = MultiPolylog)([2, 3, 4, 5], [1, 1, 1, 1]); 1](AdvancedMath/AdvancedMath_170.gif)
![%MultiPolylog([2, 3, 4, 5], [1, 1, 1, 1]) = MultiZeta(2, 3, 4, 5)](AdvancedMath/AdvancedMath_171.gif)




, `*`(MultiZeta(7, 9), `*`(`^`(Pi, 6))))) = `+`(MultiZeta(7, 9, 6), MultiZeta(7, 6, 9), MultiZeta(6, 7, 9), MultiZeta(13, 9), MultiZeta(7, 15)))](AdvancedMath/AdvancedMath_176.gif)






