diffalg[reduced_form] - compute a reduced form of a differential polynomial modulo a radical differential ideal
|
Calling Sequence
|
|
reduced_form (poly, R)
|
|
Parameters
|
|
p
|
-
|
differential polynomial
|
R
|
-
|
differential ring or radical differential ideal
|
|
|
|
|
Description
|
|
•
|
The function reduced_form returns a reduced form of p when R is a differential ring. When R is a radical differential ideal, it returns a reduced form of p modulo R.
|
•
|
All the algorithms which return differential polynomials return them under reduced form, though this is not a normal form of this polynomial.
|
•
|
The reduced form of p is a polynomial equivalent to p such that
|
|
- All the monomials of r have non zero coefficients.
|
|
- If the coefficients of p do not involve fractions, then the coefficients of r also do not.
|
•
|
Some extra simplifications may also happen, since the notation of the derivatives that appear in reduced forms is normalized.
|
|
When using the jet notation, different names may represent the same derivative (for example, and ). The order of the derivations in the reduced form is given by the list of the derivations.
|
•
|
When R is a differential ideal, a reduced form of p is a polynomial r equivalent to p modulo R. It satisfies if and only if p belongs to R.
|
•
|
The command with(diffalg,reduced_form) allows the use of the abbreviated form of this command.
|
|
|
Examples
|
|
Important: The diffalg package has been deprecated. Use the superseding package DifferentialAlgebra instead.
>
|
|
Illustration of reduced form with respect to a differential ring:
>
|
|
>
|
|
>
|
|
>
|
|
| (1) |
>
|
|
>
|
|
>
|
|
| (2) |
Illustration of reduced form modulo a radical differential ideal:
>
|
|
>
|
|
>
|
|
>
|
|
>
|
|
>
|
|
| (3) |
>
|
|
| (4) |
>
|
|
| (5) |
>
|
|
| (6) |
|
|
Download Help Document
Was this information helpful?