Tensor[NullTetradTransformation] - apply a Lorentz transformation to a null tetrad
Calling Sequences
NullTetradTransformation(NullTetrad, TransType, theta, axis)
Parameters
NullTetrad - a list of 4 vectors defining a null tetrad
TransType - a string, "null rotation", "spatial rotation", or "boost", describing the transformation type
theta - the transformation parameter
axis - (optional) a string, specifies the axis of rotation as "l"(or "L") or "m"(or"M") in the case whereTransType = "null rotation"
|
Description
|
|
•
|
Let g be a metric on a 4-dimensional manifold with signature [1, -1, -1, -1]. A list of 4 vectors [L, N, M, barM] defines a (complex) null tetrad if barM is the complex conjugate of M,
|
g(L, N) = 1 and g(M, barM) = -1,
and all other inner products vanish. In particular, the vectors [L, N, M, barM] are all null vectors.
•
|
A Lorentz transformation is a (linear) change of frame which transforms a null tetrad [L, N, M, barM] into another null tetrad [L', N', M', barM']. Every Lorentz transformation can be expressed as the composition of the following 4 basic Lorentz transformations.
|
–
|
1. A null rotation about the L axis (theta complex):
|
L' = L, N' = N + theta*M + conj(theta)*barM + theta*conj(theta)*L, M' = M + conj(theta)*L, barM' = barM + theta*L.
–
|
2. A null rotation about the N axis (theta complex)
|
L' = L + theta*M + conj(theta)*barM + theta*conj(theta)*N, N' = N, M' = M + conj(theta)*M, barM' = barM + theta*N.
–
|
3. A spatial rotation in the [M, barM] plane (theta real):
|
L' = L, N' = N, M' = (cos(theta) + I*sin(theta))*M, barM' = (cos(theta) - I*sin(theta))*barM.
–
|
4. A boost (theta real and non-zero):
|
L' = theta*L, N' = 1/theta*N, M' = M, barM' = barM.
•
|
The command NullTetradTransformation(NullTetrad, TransType, theta, axis) returns the new null tetrad [L', N', M', barM'] obtained from NullTetrad = [L, N, M, barM] through the application of one of the above Lorentz transformations.
|
•
|
This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form NullTetradTransformation(...) only after executing the commands with(DifferentialGeometry); with(Tensor); in that order. It can always be used in the long form DifferentialGeometry:-Tensor:-NullTetradTransformation.
|
|
|
Examples
|
|
>
|
|
For the first 4 examples we work with coordinates [u, v, x, y] and an off-diagonal form for the metric. This is the easiest setting to see the effects the 4 basic Lorentz transformations.
>
|
|
| (2.1) |
S >
|
|
| (2.2) |
S >
|
|
| (2.3) |
S >
|
|
| (2.4) |
S >
|
|
| (2.5) |
Example 1.
Apply a null rotation to the null tetrad T about the "l" axis. Check that the result is a null tetrad.
S >
|
|
| (2.6) |
S >
|
|
| (2.7) |
S >
|
|
| (2.8) |
S >
|
|
| (2.9) |
Example 2.
Apply a null rotation about the "n" axis to the null tetrad T. Check that the result is a null tetrad.
S >
|
|
| (2.10) |
S >
|
|
| (2.11) |
S >
|
|
| (2.12) |
S >
|
|
| (2.13) |
Example 3.
Apply a spatial rotation to the null tetrad T. Check that the result is a null tetrad.
S >
|
|
| (2.14) |
S >
|
|
| (2.15) |
Example 4.
Apply a boost to the null tetrad T. Check that the result is a null tetrad.
S >
|
|
| (2.16) |
S >
|
|
| (2.17) |
Example 5.
In this example we show how the use of a null tetrad transformation can be use to simplify the NP Weyl scalars. First we define our manifold.
S >
|
|
| (2.18) |
Define a null tetrad T1. (By decreeing this to be a null tetrad we implicitly define the spacetime metric.)
S >
|
|
| (2.19) |
Apply a null rotation to T1.
S >
|
|
| (2.20) |
Calculate the NP Weyl scalars for the null tetrad T2.
S >
|
|
| (2.21) |
We can make Psi1 = 0 by choosing a = -2/3z^3/x.
S >
|
|
| (2.22) |
Recalculate the NP Weyl scalars and note that Psi1 = 0.
S >
|
|
| (2.23) |
|
|