Tensor[NullTetrad] - construct a null tetrad from an orthonormal tetrad or from a solder form and a spinor basis
Tensor[OrthonormalTetrad] - construct an orthonormal tetrad from a null tetrad
Calling Sequences
NullTetrad(OrthTetrad)
NullTetrad(sigma, SpinBasis)
OrthonormalTetrad(NullTetrad)
Parameters
OrthTetrad - a list of 4 vectors defining an orthonormal tetrad with respect to a metric g with signature [1, -1, -1, -1]
sigma - a solder form with index type ["con", " cov", "cov"]
SpinBasis - a list of 2 rank 1 spinors, with spinor inner product = 1
NullTetrad - a list of 4 vectors defining a null tetrad with respect to a Lorentzian metric g with signature [1, -1, -1, -1]
|
Description
|
|
•
|
Let g be a metric on a 4-dimensional manifold with signature [1, -1, -1, -1]. A list of 4 vectors [E_t, E_x, E_y, E_z] defines an orthonormal tetrad if
|
g(E_t, E_t) = 1, g(E_x, E_x) = g(E_y, E_y) = g(E_z, E_z) = -1,
and all other inner products vanish. A list of 4 vectors [L, N, M, barM] defines a (complex) null tetrad if barM is the complex conjugate of M,
g(L, N) = 1 and g(M, barM) = -1,
and all other inner products vanish. In particular, the vectors [L, N, M, barM] are all null vectors.
•
|
Given an orthonormal tetrad OrthTetrad = [E_t, E_x, E_y, E_z], the command NullTetrad(OrthTetrad) constructs the null tetrad given by
|
L = (E_t + E_z)/sqrt(2), N = (E_t - E_z)/sqrt(2), M = (E_x + I*E_y)/sqrt(2), barM = (E_x - I*E_y)/sqrt(2).
•
|
Let sigma be a solder form (index type ["con", " cov", "cov"]) for the metric g. Let omicron and iota be rank 1, unprimed spinors with SpinorInnerProduct(omicron, iota) = 1. Let baromicron and bariota be their conjugates (see ConjugateSpinor). Then the vectors with components
|
L^i = sigma^i_{AA'}*omicron^A*baromicron^A', N^i = sigma^i_{AA'}*iota^A*bariota^A',
M^i = sigma^i_{AA'}*omicron^A*bariota^A', barM^i = sigma^i_{AA'}*iota^A*baromicron^A'
define a null tetrad. This null tetrad is computed with the second calling sequence NullTetrad(sigma, [omicron, iota]).
•
|
Given a null tetrad NullTetrad = [L, N, M, barM], the command OrthonormalTetrad(NullTetrad) constructs the orthonormal tetrad defined by
|
E_t = (L + N)/sqrt(2), E_x = (M + barM)/sqrt(2), E_y = - I*(M - barM)/sqrt(2), E_z = (L - N)/sqrt(2).
•
|
The command DGGramSchmidt can also be used to construct an orthonormal tetrad.
|
•
|
The command GRQuery can be used to check that a given tetrad is a null tetrad or an orthonormal tetrad.
|
•
|
These commands are part of the DifferentialGeometry:-Tensor package, and so can be used in the form NullTetrad(...) or OrthonormalTetrad(...) only after executing the commands with(DifferentialGeometry); with(Tensor) in that order. They can always be used in the long form DifferentialGeometry:-Tensor:-NullTetrad or DifferentialGeometry:-Tensor:-OrthonormalTetrad.
|
|
|
Examples
|
|
>
|
|
Example 1.
First create manifold M with coordinates [t, x, y, z].
>
|
|
| (2.1) |
Define a spacetime metric g on M with signature [1, -1, -1, -1].
M >
|
|
| (2.2) |
Define an orthonormal tetrad F on M with respect to the metric g. Verify using the command GRQuery.
M >
|
|
| (2.3) |
M >
|
|
| (2.4) |
Use the orthonormal tetrad F to construct a null tetrad N.
M >
|
|
| (2.5) |
Verify this result using the command GRQuery.
M >
|
|
| (2.6) |
It is a simple matter to check directly, using the TensorInnerProduct command, that N is a null tetrad,
M >
|
|
| (2.7) |
Example 2.
We use spinors to create a null tetrad. First create a vector bundle over M with base coordinates [t, x, y, z] and fiber coordinates [z1, z2, w1, w2].
M >
|
|
| (2.8) |
Define a spacetime metric g on M with signature [1, -1, -1, -1].
M >
|
|
| (2.9) |
Define an orthonormal frame F2 on M with respect to the metric g.
M >
|
|
| (2.10) |
Compute the solder form sigma defined by the orthonormal frame F2.
M >
|
|
| (2.11) |
Define a pair of rank 1 spinors omicron and iota. Check that their inner product is 1.
M >
|
|
| (2.12) |
M >
|
|
| (2.13) |
M >
|
|
| (2.14) |
M >
|
|
| (2.15) |
M >
|
|
| (2.16) |
Example 3.
Convert the null tetrad N2 constructed in Example 2 to an orthonormal tetrad T.
M >
|
|
| (2.17) |
Check the result.
M >
|
|
| (2.18) |
|
|