wdegree - Maple Help

difforms

 wdegree
 degree of a form

 Calling Sequence wdegree(expr)

Parameters

 expr - Maple expression

Description

 • The function wdegree computes the degree of an expression, considered as a form.
 • The function wdegree returns nonhmg when the expression is a sum of forms which have different degrees.
 • Expressions of type scalar or const have wdegree = 0.
 • The wdegree of an indexed name is the wdegree of the name without the index, unless explicitly stated.
 • The command with(difforms,wdegree) allows the use of the abbreviated form of this command.

Examples

 > $\mathrm{with}\left(\mathrm{difforms}\right):$$\mathrm{defform}\left(x=p,c=\mathrm{const},t=3,t\left[4\right]=5\right)$
 > $\mathrm{wdegree}\left(c\right)$
 ${0}$ (1)
 > $\mathrm{wdegree}\left(x\right)$
 ${p}$ (2)
 > $d\left({x}^{2}\right)$
 $\left({1}{+}{\left({-1}\right)}^{{p}}\right){}{d}{}\left({x}\right)\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}{&ˆ}\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}{x}$ (3)
 > $\mathrm{wdegree}\left(\right)$
 ${2}{}{p}{+}{1}$ (4)
 > $\mathrm{wdegree}\left(x+d\left(x\right)\right)$
 ${\mathrm{nonhmg}}$ (5)
 > $\mathrm{wdegree}\left(t\right)$
 ${3}$ (6)
 > $\mathrm{wdegree}\left(t\left[1\right]\right)$
 ${3}$ (7)
 > $\mathrm{wdegree}\left(t\left[4\right]\right)$
 ${5}$ (8)
 > $\mathrm{wdegree}\left(u\left[3\right]\right)=\mathrm{wdegree}\left(u\right)$
 ${\mathrm{wdegree}}{}\left({u}\right){=}{\mathrm{wdegree}}{}\left({u}\right)$ (9)