Parametrize - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Physics[FeynmanIntegral][Parametrize] - parametrize a Feynman integral, as the ones returned by the FeynmanDiagrams command, appearing in the expansion of the Scattering matrix in momentum representation

Calling Sequence

Parametrize(inert_Feynman_integral, options)

Parameters

inert_Feynman_integral

-

the inert form of Feynman integral, that is a function whose name is %FeynmanIntegral, as the ones returned by FeynmanDiagrams when working in momentum representation.

Description

• 

Parametrize receives a Feynman integral constructed using the inert function %FeynmanIntegral, as the ones returned by the FeynmanDiagrams command, and rewrites the integrand replacing the propagators by parametrized integrals, using Feynman (default) or α parameters. This is the first step performed by the FeynmanIntegral command towards the computation of the integral using dimensional regularization.

• 

Only propagators involving a loop momentum (the integration variable of the %FeynmanIntegral), of the form p__n, so the letter p followed by two underscores and where n is a positive integer, are included in the parametrization. The output is the parametrized form of the integral, or, if specified, only of the integrand.

• 

The available parametrization schemes introduce either Feynman or alpha (also known as Schwinger) parameters. The Feynman parametrization of a product of L denominators A_l is [1]

  

where the ξi are the Feynman parameters, and the αi and λj are, respectively, the α parameters and the λ (possibly complex) exponents.

Examples

with(Physics):

with(FeynmanIntegral);

Evaluate,ExpandDimension,FromAbstractRepresentation,Parametrize,Series,SumLookup,TensorBasis,TensorReduce,ToAbstractRepresentation,ε,ϵ

(1)

interface(imaginaryunit = i):

%FeynmanIntegral(1/((-m^2 + p__1^2 + i * epsilon)*(p__1^2 + i * epsilon)), p__1);

1m2+p__12+εp__12+εⅆp__1 4

(2)

Parametrize((2));

(3)

Parametrize((2), integrand);

* Partial match of 'integrand' against keyword 'returnintegrand'

δ1+ξ__1+ξ__2ξ__1m2+p__12+ξ__2p__122

(4)

Parametrize((2), kindofparameters = alpha);

00ⅇp__12α__1+α__2ⅇ−ⅈα__1m2ⅆα__1ⅆα__2ⅆp__1 4

(5)

Parametrize((2), propagators = 'LP');

* Partial match of 'propagators' against keyword 'propagatorslist'

(6)

The list of propagators:

LP;

m2+p__12,p__12

(7)

An example departing from an interaction Lagrangian

L := lambda*phi(X)^3;

LλφX3

(8)

A process with one incoming and one outgoing particle a 1-loop

FeynmanDiagrams(L, incomingparticles = [phi], outgoingparticles = [phi], numberofloops = 1, diagrams);

9λ2δP__2+P__18π3E__1E__2P__1+p__22m__φ2+εp__22m__φ2+εⅆp__2 4

(9)

To Parametrize this Feynman integral using Feynman parameters, use

Parametrize((9));

(10)

Parametrizing the integral is the first step towards its evaluation. Within the FeynmanIntegral package, to evaluate the integral, using dimensional regularization, you can use Evaluate

Evaluate((9));

98π1ϵλ2δP__2+P__1n=0P__12nm__φ2ϵ2nΓϵ+nΓn+1Γ2n+2E__1E__2

(11)

Evaluate((9), expanddimension);

98λ2δP__2+P__1πE__1E__2ϵ−1+98λ2δP__2+P__1γ+2lnm__φn=1P__12nΓnΓn+1m__φ2nΓ2n+2+lnπE__1E__2π+Oϵ

(12)

To remove the series structure of this result and have it expressed as a polynomial see convert/polynom.

The same process at two loops

FeynmanDiagrams(L, incomingparticles = [phi], outgoingparticles = [phi], numberofloops = 2);

28164λ4δP__2+P__1π7E__1E__2P__2+p__4+p__52m__φ2+εP__2P__1+p__4+p__52m__φ2+εp__4+p__52m__φ2+εp__42m__φ2+εp__52m__φ2+εⅆp__4 4ⅆp__5 4+8164λ4δP__2+P__1π7E__1E__2P__1+p__4+p__52m__φ2+εp__4+p__52m__φ2+εP__2p__42m__φ2+εp__42m__φ2+εp__52m__φ2+εⅆp__4 4ⅆp__5 4+8164λ4δP__2+P__1π7E__1E__2P__1+P__2p__4+p__52m__φ2+εP__2+p__4p__52m__φ2+εP__2p__42m__φ2+εp__42m__φ2+εp__52m__φ2+εⅆp__4 4ⅆp__5 4

(13)

To Parametrize each Feynman integral within this expression you can use subsindets

subsindets((13), specfunc(%FeynmanIntegral), Parametrize);

(14)

 

See Also

convert/polynom, Dgamma, Evaluate, FeynmanDiagrams, FeynmanIntegral,Overview, Physics, Physics conventions, Physics examples, Physics Updates, Tensors - a complete guide, Mini-Course Computer Algebra for Physicists, Setup, TensorReduce

References

  

[1] Smirnov, V.A., Feynman Integral Calculus. Springer, 2006.

  

[2] Weinberg, S., The Quantum Theory Of Fields. Cambridge University Press, 2005.

  

[3] Bogoliubov, N.N., and Shirkov, D.V. Quantum Fields. Benjamin Cummings, 1982.