AsDerivation - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

VectorField Object as Derivation Operator

 Calling Sequence X( f)

Parameters

 X - a VectorField object f - scalar expression, or Vector, Matrix, list or table of scalar expressions

Description

 • A VectorField object X can act as derivation operator.
 • A derivation is an operator $X$ such that $X\left(f+g\right)=X\left(f\right)+X\left(g\right)$ and $X\left(\mathrm{fg}\right)=\mathrm{fX}\left(g\right)+X\left(f\right)g$
 • Because it can act as an operator, a VectorField object is of type appliable. See Overview of VectorField Overloaded Builtins for more detail.
 • When a vector field is acting as an operator, it will distribute itself over indexable types such as Vectors, Matrices, lists, and tables.
 • This method is associated with the VectorField object. For more detail, see Overview of the VectorField object.

Examples

 > $\mathrm{with}\left(\mathrm{LieAlgebrasOfVectorFields}\right):$
 > $X≔\mathrm{VectorField}\left(x{\mathrm{D}}_{x}+y{\mathrm{D}}_{y},\mathrm{space}=\left[x,y\right]\right)$
 ${X}{≔}{x}{}\left(\frac{{ⅆ}}{{ⅆ}{x}}\right){+}{y}{}\left(\frac{{ⅆ}}{{ⅆ}{y}}\right)$ (1)

 > $X\left({x}^{2}\right)$
 ${2}{}{{x}}^{{2}}$ (2)

 > $X\left(\left[x,{x}^{2},{x}^{3}\right]\right)$
 $\left[{x}{,}{2}{}{{x}}^{{2}}{,}{3}{}{{x}}^{{3}}\right]$ (3)
 > $A≔\mathrm{Matrix}\left(\left[\left[x,y\right],\left[{x}^{2},{y}^{2}\right]\right]\right)$
 ${A}{≔}\left[\begin{array}{cc}{x}& {y}\\ {{x}}^{{2}}& {{y}}^{{2}}\end{array}\right]$ (4)

 > $X\left(A\right)$
 $\left[\begin{array}{cc}{x}& {y}\\ {2}{}{{x}}^{{2}}& {2}{}{{y}}^{{2}}\end{array}\right]$ (5)

Compatibility

 • The VectorField Object as Derivation Operator command was introduced in Maple 2020.
 • For more information on Maple 2020 changes, see Updates in Maple 2020.