Intersection - Maple Help

Intersection

find a LAVF object whose solution space is the intersection of solution spaces of given LAVF objects.

 Calling Sequence Intersection( L1, L2, ..., depname = vars )

Parameters

 L1, L2, ... - a sequence of LAVF objects living on the same space vars - (optional) a list of new dependent variable names

Description

 • Let L1,L2, ... be a sequence of LAVF objects living on the same space (see AreSameSpace). The Intersection method returns a new LAVF object whose solution space is the intersection of solutions of L1,L2,....
 • By default, the dependent variable names of the returned object are taken from L1. The dependent variable names will be vars if the optional argument depnames = vars is specified.
 • This method is front-end to the corresponding method of a LHPDE object. That is, let S1, S2,...  be the determining systems of L1,L2,...  (i.e. Si = GetDeterminingSystem(Li)), then the call Intersection(L1,L2,..) is equivalent to Intersection(S1,S2,..). All remaining input arguments will be passed down to its determining system level. See the method Intersection of a LHPDE object for more detail.
 • This method is associated with the LAVF object. For more detail, see Overview of the LAVF object.

Examples

 > $\mathrm{with}\left(\mathrm{LieAlgebrasOfVectorFields}\right):$
 > $\mathrm{Typesetting}:-\mathrm{Settings}\left(\mathrm{userep}=\mathrm{true}\right):$
 > $\mathrm{Typesetting}:-\mathrm{Suppress}\left(\left[\mathrm{ξ}\left(x,y\right),\mathrm{η}\left(x,y\right)\right]\right):$
 > $X≔\mathrm{VectorField}\left(\mathrm{ξ}\left(x,y\right){\mathrm{D}}_{x}+\mathrm{η}\left(x,y\right){\mathrm{D}}_{y},\mathrm{space}=\left[x,y\right]\right)$
 ${X}{≔}{\mathrm{\xi }}{}\left(\frac{{ⅆ}}{{ⅆ}{x}}\right){+}{\mathrm{\eta }}{}\left(\frac{{ⅆ}}{{ⅆ}{y}}\right)$ (1)

The determining system for 2-dim Euclidean

 > $\mathrm{E2}≔\mathrm{LHPDE}\left(\left[\frac{\partial }{\partial x}\mathrm{ξ}\left(x,y\right)=0,\frac{\partial }{\partial y}\mathrm{η}\left(x,y\right)=0,\frac{\partial }{\partial y}\mathrm{ξ}\left(x,y\right)+\frac{\partial }{\partial x}\mathrm{η}\left(x,y\right)=0,\frac{{\partial }^{2}}{\partial {y}^{2}}\mathrm{ξ}\left(x,y\right)=0,\frac{{\partial }^{2}}{\partial {x}^{2}}\mathrm{η}\left(x,y\right)=0\right],\mathrm{indep}=\left[x,y\right],\mathrm{dep}=\left[\mathrm{ξ},\mathrm{η}\right]\right)$
 ${\mathrm{E2}}{≔}\left[{{\mathrm{\xi }}}_{{x}}{=}{0}{,}{{\mathrm{\eta }}}_{{y}}{=}{0}{,}{{\mathrm{\xi }}}_{{y}}{+}{{\mathrm{\eta }}}_{{x}}{=}{0}{,}{{\mathrm{\xi }}}_{{y}{,}{y}}{=}{0}{,}{{\mathrm{\eta }}}_{{x}{,}{x}}{=}{0}\right]{,}{\mathrm{indep}}{=}\left[{x}{,}{y}\right]{,}{\mathrm{dep}}{=}\left[{\mathrm{\xi }}{,}{\mathrm{\eta }}\right]$ (2)

The determining system for 2-dim translations

 > $\mathrm{T2}≔\mathrm{LHPDE}\left(\left[\frac{\partial }{\partial x}\mathrm{ξ}\left(x,y\right)=0,\frac{\partial }{\partial y}\mathrm{ξ}\left(x,y\right)=0,\frac{\partial }{\partial x}\mathrm{η}\left(x,y\right)=0,\frac{\partial }{\partial y}\mathrm{η}\left(x,y\right)=0\right],\mathrm{indep}=\left[x,y\right],\mathrm{dep}=\left[\mathrm{ξ},\mathrm{η}\right]\right)$
 ${\mathrm{T2}}{≔}\left[{{\mathrm{\xi }}}_{{x}}{=}{0}{,}{{\mathrm{\xi }}}_{{y}}{=}{0}{,}{{\mathrm{\eta }}}_{{x}}{=}{0}{,}{{\mathrm{\eta }}}_{{y}}{=}{0}\right]{,}{\mathrm{indep}}{=}\left[{x}{,}{y}\right]{,}{\mathrm{dep}}{=}\left[{\mathrm{\xi }}{,}{\mathrm{\eta }}\right]$ (3)

We first construct LAVFs for E(2) and T(2)

 > $\mathrm{LE2}≔\mathrm{LAVF}\left(X,\mathrm{E2}\right)$
 ${\mathrm{LE2}}{≔}\left[{\mathrm{\xi }}{}\left(\frac{{ⅆ}}{{ⅆ}{x}}\right){+}{\mathrm{\eta }}{}\left(\frac{{ⅆ}}{{ⅆ}{y}}\right)\right]\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}{&where}\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}\left\{\left[{{\mathrm{\xi }}}_{{y}{,}{y}}{=}{0}{,}{{\mathrm{\xi }}}_{{x}}{=}{0}{,}{{\mathrm{\eta }}}_{{x}}{=}{-}{{\mathrm{\xi }}}_{{y}}{,}{{\mathrm{\eta }}}_{{y}}{=}{0}\right]\right\}$ (4)
 > $\mathrm{LT2}≔\mathrm{LAVF}\left(X,\mathrm{T2}\right)$
 ${\mathrm{LT2}}{≔}\left[{\mathrm{\xi }}{}\left(\frac{{ⅆ}}{{ⅆ}{x}}\right){+}{\mathrm{\eta }}{}\left(\frac{{ⅆ}}{{ⅆ}{y}}\right)\right]\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}{&where}\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}\left\{\left[{{\mathrm{\xi }}}_{{x}}{=}{0}{,}{{\mathrm{\eta }}}_{{x}}{=}{0}{,}{{\mathrm{\xi }}}_{{y}}{=}{0}{,}{{\mathrm{\eta }}}_{{y}}{=}{0}\right]\right\}$ (5)
 > $\mathrm{Intersection}\left(\mathrm{LE2},\mathrm{LT2}\right)$
 $\left[{\mathrm{\xi }}{}\left(\frac{{ⅆ}}{{ⅆ}{x}}\right){+}{\mathrm{\eta }}{}\left(\frac{{ⅆ}}{{ⅆ}{y}}\right)\right]\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}{&where}\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}\left\{\left[{{\mathrm{\xi }}}_{{x}}{=}{0}{,}{{\mathrm{\eta }}}_{{x}}{=}{0}{,}{{\mathrm{\xi }}}_{{y}}{=}{0}{,}{{\mathrm{\eta }}}_{{y}}{=}{0}\right]\right\}$ (6)
 > $\mathrm{Intersection}\left(\mathrm{LE2},\mathrm{LT2},\mathrm{depname}=\left[\mathrm{α},\mathrm{β}\right]\right)$
 $\left[{\mathrm{\alpha }}{}\left({x}{,}{y}\right){}\left(\frac{{ⅆ}}{{ⅆ}{x}}\right){+}{\mathrm{\beta }}{}\left({x}{,}{y}\right){}\left(\frac{{ⅆ}}{{ⅆ}{y}}\right)\right]\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}{&where}\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}\left\{\left[\frac{{\partial }}{{\partial }{x}}\phantom{\rule[-0.0ex]{0.4em}{0.0ex}}{\mathrm{\alpha }}{}\left({x}{,}{y}\right){=}{0}{,}\frac{{\partial }}{{\partial }{x}}\phantom{\rule[-0.0ex]{0.4em}{0.0ex}}{\mathrm{\beta }}{}\left({x}{,}{y}\right){=}{0}{,}\frac{{\partial }}{{\partial }{y}}\phantom{\rule[-0.0ex]{0.4em}{0.0ex}}{\mathrm{\alpha }}{}\left({x}{,}{y}\right){=}{0}{,}\frac{{\partial }}{{\partial }{y}}\phantom{\rule[-0.0ex]{0.4em}{0.0ex}}{\mathrm{\beta }}{}\left({x}{,}{y}\right){=}{0}\right]\right\}$ (7)

Compatibility

 • The Intersection command was introduced in Maple 2020.