Cylindrical Shape C - MapleSim Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

# Online Help

###### All Products    Maple    MapleSim

Cylindrical Shape C

Cylindrical-shaped solid material, Type C

Description

The Cylindrical Shape C component models a generic ideal thermal conductor with cylindrical shape.

Cylindrical Shape is divided into concentric Ring and central Cylindrical nodes. The total number of these smaller nodes is determined by the $\mathrm{Nodes}$ parameter.

You can get the thermal information from each Ring and Cylindrical node.

The geometry of Cylindrical Shape C is the following.

The image below illustrates the case of Cylindrical Shape C having $\mathrm{Nodes}$=[3, 3]. The order of  is the following.

The numbers of the of the nodes are determined by the order from front to back.

This rule is the same as the numbering of of Cylindrical Shape A.

 The node and port_front[i] numbers The node and port_back[i] numbers

 Equations (For details, see Ring Sector, Cylindrical Sector, Thermal Conductor  and Heat Capacitor help).

Variables

(For details, see Ring Sector, Cylindrical Sector, Thermal Conductor  and Heat Capacitor help).

 Symbol Units Description Modelica ID $T\left[i\right]$ $K$ Temperature of i-th Heat Capacitor T[]

Connections

 Name Description Modelica ID $\mathrm{port_outer}\left[i\right]$ i-th thermal port of outer The total number of i is determined by Nodes[2] port_outer[] $\mathrm{port_front}\left[i\right]$ Thermal port of front The total number of i is determined by Nodes[1] port_front[] $\mathrm{port_back}\left[i\right]$ Thermal port of back The total number of i is determined by Nodes[1] port_back[] $\mathrm{port_center}\left[i\right]$ i-th thermal port of center The total number of i is determined by Nodes[1]*Nodes[2] port_center[]

Parameters

 Symbol Default Units Description Modelica ID $\mathrm{Material}$ $\mathrm{SolidPropertyData1}$ $-$ Solid material property data Material $\frac{W}{m\cdot K}$ Material.k is the thermal conductivity of the material Material.k $\frac{J}{\mathrm{kg}\cdot K}$ Material.cp is the specific heat capacity of the material Material.cp $\frac{\mathrm{kg}}{{m}^{3}}$ Material.rho is the density of the material Material.rho $R$ $1$ ${m}^{}$ Radius of the shape R $D$ $1$ ${m}^{}$ Depth of the shape D $\mathrm{Nodes}$ $\left[3,3\right]$ $-$ Number of nodes [1]:Number of concentric ring and cylinder, [2]:Depth axis numNode[] $\mathrm{T__start}$ $293.15$ $K$ Initial condition of temperature T_start $\mathrm{fixed}$ $\mathrm{true}$ $-$ True enforces the T_start initial condition fixed

Parameters for Visualization (Optional)

Note: If you enable Show Visualization option, you can visualize temperature change as colored geometry in 3-D Playback Window. To make this function available, you have to enable 3-D Animation option in Multibody Settings.
The quality of the visualization is affected if any open plot windows are behind the 3-D Playback Window. If you are experiencing playback issues, try moving the 3-D Playback Window so that it does not overlap a plot window. Alternatively, minimize or close any open plot windows.

(For more details about the relation between color and temperature, see Color Blend  help).

 Symbol Default Units Description Modelica ID $\mathrm{false}$ $-$ If true, you can visualize the temperature of heat capacitor of each node Shape as colored geometry in 3-D Playback Window. And the following visualization parameters are available. VisOn $\mathrm{Position}$ $\left[0,0,0\right]$ $m$ Position of the node in visualization [X, Y, Z]. pos[3] Rotation $\left[0,0,0\right]$ rad Rotation of the node in visualization [X, Y, Z]. rot[3] $\mathrm{Transparent}$ $\mathrm{false}$ $-$ If true, shape geometry will be transparent. transparent $\mathrm{T__max}$ $373.15$ $K$ Upper limit of temperature in the color blend. Tmax $\colorbox[rgb]{1,0,0}{{\mathrm{RGB}}}\left(\colorbox[rgb]{1,0,0}{{255}}\colorbox[rgb]{1,0,0}{{,}}\colorbox[rgb]{1,0,0}{{0}}\colorbox[rgb]{1,0,0}{{,}}\colorbox[rgb]{1,0,0}{{0}}\right)$ $-$ Color when temperature is over Temperature between $\mathrm{T__max}$ and $\mathrm{T__min}$ are automatically interpolated to a color. color_Tmax $\mathrm{T__min}$ $273.15$ $K$ Lower limit of temperature in the color blend. Tmin $\colorbox[rgb]{0,0,1}{{\mathrm{RGB}}}\left(\colorbox[rgb]{0,0,1}{{0}}\colorbox[rgb]{0,0,1}{{,}}\colorbox[rgb]{0,0,1}{{0}}\colorbox[rgb]{0,0,1}{{,}}\colorbox[rgb]{0,0,1}{{255}}\right)$ $-$ Color when temperature is under $\mathrm{T__min}$. Temperature between $\mathrm{T__max}$ and $\mathrm{T__min}$ are automatically interpolated to a color. color_Tmin $\mathrm{true}$ $-$ If true, heat capacitor sphere will be shown. showCapacitor $\mathrm{R__sphere}$ $0.2$ $m$ Radius of visualized heat capacitor sphere. Sradius

 See Also