FischerGroup - Maple Help

Online Help

All Products    Maple    MapleSim


GroupTheory

  

FischerGroup

 

Calling Sequence

Parameters

Description

Examples

Compatibility

Calling Sequence

FischerGroup( n )

Parameters

n

-

: {22,23,24} : integer parameter indicating the Fischer group

Description

• 

The Fischer groups are three among the sporadic finite simple groups. They were discovered by Bernd Fischer in the 1970s, and are generated by a conjugacy class of involutions, the product of any two of which has order either 2 or 3. The group Fi24' is the derived subgroup (of index 2) of a non-simple group Fi24 of order 2510411418381323442585600.

• 

The FischerGroup( n ) command returns a permutation group isomorphic to the Fischer group Fi22, Fi23 or Fi24' for n = 22, 23, 24, respectively.

Examples

withGroupTheory:

GFischerGroup23

GFi23

(1)

DegreeG

31671

(2)

GroupOrderG

4089470473293004800

(3)

IsSimpleG

true

(4)

Compatibility

• 

The GroupTheory[FischerGroup] command was introduced in Maple 17.

• 

For more information on Maple 17 changes, see Updates in Maple 17.

See Also

GroupTheory[Degree]

GroupTheory[GroupOrder]

GroupTheory[IsSimple]