arccoshp - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

 Calling Sequence sinp(ex, p, s)  or  evalp(sin(ex, p, s)) sinp(ex, p)  or  evalp(sin(ex, p)) sinp(ex) ...

Parameters

 ex - expression of rational numbers and p-adic numbers p - prime number or positive integer s - positive integer

Description

 • The following functions evaluate the p-adic version of the corresponding real-valued function (obtained by dropping the final p from the name).

 sinp cosp tanp cscp secp cotp sinhp coshp tanhp cschp sechp cothp arcsinp arccosp arctanp arccscp arcsecp arccotp arcsinhp arccoshp arctanhp arccschp arcsechp arccothp expp logp sqrtp

 • sinp is a short form for evalp@sin, and similarly for each of the other functions above.
 • The parameter s sets the size of the resulting expression, where "size" means the number of terms of the p-adic number which will be printed.  If omitted, it defaults to the value of the global variable Digitsp, which is initially assigned the value 10.
 • The expression ex can contain any of the operations +, -, *, /, ^, and any of the functions defined in the padic package.
 • If the second and third arguments are omitted, then the expression ex must be a p-adic number.
 • If the result of the computation is not convergent in the p-adic field, then the routine returns FAIL.
 • See padic[evalp] for an explanation of the representation of p-adic numbers in Maple.
 • These functions are part of the padic package, and so can only be used after performing the command with(padic) or with(padic,).

Examples

 > $\mathrm{with}\left(\mathrm{padic}\right):$
 > $\mathrm{cosp}\left(3,3\right)$
 ${1}{+}{{3}}^{{2}}{+}{2}{}{{3}}^{{4}}{+}{{3}}^{{6}}{+}{2}{}{{3}}^{{7}}{+}{{3}}^{{8}}{+}{O}{}\left({{3}}^{{9}}\right)$ (1)
 > $\mathrm{cosp}\left(3+,3\right)$
 ${\mathrm{FAIL}}$ (2)
 > $\mathrm{cos}\left(3\right)$
 ${\mathrm{cos}}{}\left({3}\right)$ (3)
 > $\mathrm{evalf}\left(\right)$
 ${-0.9899924966}$ (4)
 > $\mathrm{evalp}\left(,3\right)$
 ${1}{+}{{3}}^{{2}}{+}{2}{}{{3}}^{{4}}{+}{{3}}^{{6}}{+}{2}{}{{3}}^{{7}}{+}{{3}}^{{8}}{+}{O}{}\left({{3}}^{{9}}\right)$ (5)
 > $\mathrm{Digitsp}≔8$
 ${\mathrm{Digitsp}}{≔}{8}$ (6)
 > $\mathrm{evalp}\left({ⅇ}^{3},3\right)$
 ${1}{+}{3}{+}{{3}}^{{2}}{+}{2}{}{{3}}^{{3}}{+}{2}{}{{3}}^{{4}}{+}{{3}}^{{6}}$ (7)
 > $\mathrm{logp}\left(\right)$
 ${3}{+}{O}{}\left({{3}}^{{8}}\right)$ (8)
 > $\mathrm{arctanp}\left(x,p,10\right)$
 ${\mathrm{arctanp}}{}\left({x}{,}{p}{,}{10}\right)$ (9)
 > $\mathrm{eval}\left(,\left[x=6,p=3\right]\right)$
 ${2}{}{3}{+}{{3}}^{{2}}{+}{2}{}{{3}}^{{4}}{+}{2}{}{{3}}^{{8}}$ (10)
 > $\mathrm{op}\left(\right)$
 ${\mathrm{p_adic}}{}\left({3}{,}{1}{,}\left[{2}{,}{1}{,}{0}{,}{2}{,}{0}{,}{0}{,}{0}{,}{2}{,}{0}{,}{0}\right]\right)$ (11)
 > $\mathrm{evalp}\left(\right)$
 ${2}{}{3}{+}{{3}}^{{2}}{+}{2}{}{{3}}^{{4}}{+}{2}{}{{3}}^{{8}}$ (12)