 exp - Maple Help

exp

The Exponential Function Calling Sequence

 exp(x) ${ⅇ}^{x}$ Parameters

 x - expression Description

 • The exponential function, exp(x), calculates the value of e to the power of x, where e is the base of the natural logarithm, 2.718281828... .
 • You can enter the command exp using either the 1-D or 2-D calling sequence. For example, exp(-1) is equivalent to ${ⅇ}^{-1}$. Note that the 2-D calling sequence must be entered by using the Expression palette, the Common Symbols palette, or command completion. To use command completion, type e, press Esc, and select Exponential 'e'.
 • E is no longer reserved in Maple.  exp(1) is used instead. Examples

 > $\mathrm{exp}\left(-1\right)$
 ${{ⅇ}}^{{-1}}$ (1)
 > $\mathrm{evalf}\left(\right)$
 ${0.3678794412}$ (2)
 > $\mathrm{exp}\left(1.379\right)$
 ${3.970928713}$ (3)
 > $\mathrm{diff}\left(\mathrm{exp}\left(-2x\right),x\right)$
 ${-}{2}{}{{ⅇ}}^{{-}{2}{}{x}}$ (4)
 > $\mathrm{int}\left(\mathrm{exp}\left(-2x\right),x\right)$
 ${-}\frac{{{ⅇ}}^{{-}{2}{}{x}}}{{2}}$ (5)

In 2-D math notation, it is important to use the Expression palette to enter the exponential function, because Maple does not recognize that the letter "e" is the exponential function.

 > $\mathrm{evalf}\left(\mathrm{exp}\left(1\right)\right)$
 ${2.718281828}$ (6)
 > $\mathrm{evalf}\left(e\right)$
 ${e}$ (7)
 > $\mathrm{exp}\left(I\mathrm{\pi }\right)+1$
 ${0}$ (8)
 > $\mathrm{exp}\left(1.234+5.678I\right)$
 ${2.824884809}{-}{1.954188170}{}{I}$ (9)
 > $\mathrm{evalc}\left(\mathrm{exp}\left(x+Iy\right)\right)$
 ${{ⅇ}}^{{x}}{}{\mathrm{cos}}{}\left({y}\right){+}{I}{}{{ⅇ}}^{{x}}{}{\mathrm{sin}}{}\left({y}\right)$ (10)
 > $\mathrm{solve}\left(\mathrm{exp}\left(4y\right)=3,y\right)$
 $\frac{{\mathrm{ln}}{}\left({3}\right)}{{4}}$ (11)