formal solution - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


dsolve/formal_solution

find formal solutions to a homogeneous linear ODE with polynomial coefficients

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

dsolve(ODE, y(x), 'formal_solution', 'coeffs'=coeff_type, 'point'=x0)

dsolve(ODE, y(x), 'type=formal_solution', 'coeffs'=coeff_type, 'point'=x0)

Parameters

ODE

-

homogeneous linear ordinary differential equation with polynomial coefficients

y(x)

-

dependent variable (the indeterminate function)

'type=formal_solution'

-

(optional) request for formal solutions

'coeffs'=coeff_type

-

(optional) coeff_type is one of 'mhypergeom', 'dAlembertian'

'point'=x0

-

algebraic number, rational in parameters, or infinity

Description

• 

When the input ODE is a homogeneous linear ode with polynomial coefficients, and the optional arguments 'formal_solution' (or 'type=formal_solution') and 'coeffs'=coeff_type are given, the dsolve command returns a set of formal solutions with the specified coefficients at the given point (the default is at the origin). For more information, see Slode[mhypergeom_formal_sol] and Slode[dAlembertian_formal_sol].

Examples

Find the formal solution set with m-hypergeometric series coefficients.

odex2+1xdiffyx,x,x,x+32x2+1diffyx,x,x12yx

odex2+1xⅆ3ⅆx3yx+32x2+1ⅆ2ⅆx2yx12yx

(1)

dsolveode,yx,formal_solution,coeffs=mhypergeom

yx=2x3+x_C1+_C2_n=1Γ_n32−1_nx2_nΓ_n2πx

(2)

Find the formal solution set with d'Alembertian series coefficient.

ode4x2+2xyx+2x3x3x2diffyx,x+x3x4diffyx,`$`x,2

odex2+2x4yx+3x3x2+2xⅆⅆxyx+x4+x3ⅆ2ⅆx2yx

(3)

dsolveode,yx,formal_solution,coeffs=dAlembertian

yx=x2_n=0x_n2+_n=0_n1=0_n112_n1_k=0_n11_k+2_k+32x_n_C1+ⅇ2x_n=0x_n13_C2x

(4)

odex1yx2x24x1diffyx,x12xx+1x6diffyx,`$`x,2+122+xx2diffyx,`$`x,3

odex1yx2x24x1ⅆⅆxyxxx+1x6ⅆ2ⅆx2yx2+x+2x2ⅆ3ⅆx3yx2

(5)

dsolveode,yx,formal_solution,coeffs=dAlembertian,point=a

yx=_C1_n=01a+2_nxa_n_k=0_n1_k+1_k+2+_C2a2_n=01a+2_n_n1=0_n1_n1+1_k=0_n11_k+1_k+22a+2a_n1_n1+2xa_n_k=0_n1_k+1_k+2+3aa+2_n=01a+2_n_n1=0_n1_n1+1_k=0_n11_k+1_k+22a+2a_n1_n2=0_n11_n2+2_k=0_n21_k+2_k+3_n2+1_n1+2xa_n_k=0_n1_k+1_k+2a2a+2_n=01a+2_n_n1=0_n1_n1+1_k=0_n11_k+1_k+22a+2a_n1_n2=0_n11_n2+2_k=0_n21_k+2_k+3_n3=0_n21_n3+3a_n3_n3+1_k=0_n31_k+4_k+1_k+3_n2+1_n1+2xa_n_k=0_n1_k+1_k+2_C3

(6)

See Also

DEtools/formal_sol

dsolve

dsolve/formal_series

Slode/dAlembertian_formal_sol

Slode/mhypergeom_formal_sol