diffalg(deprecated)/field_extension - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : diffalg(deprecated)/field_extension

diffalg

  

field_extension

  

define a field extension of the field of the rational numbers

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

field_extension (transcendental_elements = L, base_field = G)

field_extension (relations = J, base_field = G)

field_extension (prime_ideal = P)

Parameters

L

-

list or set of names

G

-

(optional) ground field

J

-

list or set of polynomials

P

-

characterizable differential ideal

Description

• 

Important: The diffalg package has been deprecated. Use the superseding package DifferentialAlgebra instead.

• 

The function field_extension returns a table representing a  field extension of the field of the rational numbers. This field can be used as a field of constants for differential polynomial rings.

• 

For all the forms of field_extension, the parameter base_field = G can be omitted. In that case, it is taken as the field of the rational numbers.

• 

The first form of field_extension returns the purely transcendental field extension GL of G.

• 

The second form of field_extension returns the field of the fractions of the quotient ring G [X1 ... Xn] / (J) where the Xi are the names that appear in the polynomials of R and do not belong to G and (J) denotes the ideal generated by J in the polynomial ring G [X1 ... Xn].

  

You must ensure that the ideal (J) is prime, field_extension does not check this.

• 

The third form of field_extension returns the field of fractions of R / P where P is a characterizable differential ideal in the differential polynomial ring R.

  

You must ensure that the characterizable differential ideal P is prime. The function field_extension does not check this.

  

The embedding differential polynomial ring of P must be endowed with a jet notation.

Examples

Important: The diffalg package has been deprecated. Use the superseding package DifferentialAlgebra instead.

withdiffalg:

K0field_extensiontranscendental_elements=a

K0ground_field

(1)

K1field_extensionrelations=ab1,cd,base_field=K0

K1ground_field

(2)

R0differential_ringfield_of_constants=K1,derivations=x,ranking=u

R0ODE_ring

(3)

pab2ux,x+cu2+d3ux3+1

pd3ux3+ab2ux,x+cu2+1

(4)

reduced_formp,R0

d3ux3+ab2ux,x+du2+1

(5)

PRosenfeld_Groebneracux4du2,R0

Pcharacterizable

(6)

equationsP

aux4u2

(7)

K2field_extensionprime_ideal=P

K2ground_field

(8)

K3field_extensiontranscendental_elements=e,base_field=K2

K3ground_field

(9)

R1differential_ringfield_of_constants=K3,derivations=y,ranking=v

R1ODE_ring

(10)

qaux,x8uuxvy+b+evy,yux+x

qaux,x8uuxvy+b+evy,yux+x

(11)

reduced_formq,R1

vy,yb+vy,yeux+x

(12)

See Also

diffalg(deprecated)

diffalg(deprecated)/differential_algebra

diffalg(deprecated)/differential_ring

diffalg(deprecated)/reduced_form

diffalg(deprecated)/Rosenfeld_Groebner

diffalg(deprecated)[equations]

DifferentialAlgebra[RosenfeldGroebner]