describe(deprecated)/percentile - Maple Help

stats[describe]

 percentile
 Percentiles of a Statistical List

 Calling Sequence stats[describe, percentile[which]](data, gap) describe[percentile[which]](data, gap)

Parameters

 data - statistical list which - percentile required gap - (optional, default=false) the common size of gaps between classes.

Description

 • Important: The stats package has been deprecated. Use the superseding package Statistics instead.
 • The function percentile of the subpackage stats[describe, ...] finds the item in data that corresponds to the percentile specified by which. If the requested percentile falls between entries, it is interpolated.
 • The percentiles are values that partition the data, once sorted, into 100 equal parts.
 • Using percentiles, one can compute various measures of dispersion. For example, the 10-90 percentile range is the value of the 90th percentile minus that of the 10th percentile. Other similar dispersion measures constructed with the percentiles are the 20-80 and the 25-75 percentile range. For more information related to measures of dispersion, refer to describe[standarddeviation].
 • Missing data are ignored.
 • For information about the parameter gap, see describe[gaps].
 • The data must be numeric.
 • The command with(stats[describe],percentile) allows the use of the abbreviated form of this command.

Examples

Important: The stats package has been deprecated. Use the superseding package Statistics instead.

 > $\mathrm{with}\left(\mathrm{stats}\right):$
 > $\mathrm{data}≔\left[\mathrm{seq}\left(\frac{i}{3}+\frac{1}{2},i=1..300\right)\right]:$
 > ${\mathrm{describe}}_{{\mathrm{percentile}}_{15}}\left(\mathrm{data}\right)$
 $\frac{{31}}{{2}}$ (1)
 > $\mathrm{somepercentiles}≔\left[\mathrm{seq}\left({\mathrm{describe}}_{{\mathrm{percentile}}_{9i}},i=1..9\right)\right]$
 ${\mathrm{somepercentiles}}{≔}\left[{{\mathrm{describe}}}_{{{\mathrm{percentile}}}_{{9}}}{,}{{\mathrm{describe}}}_{{{\mathrm{percentile}}}_{{18}}}{,}{{\mathrm{describe}}}_{{{\mathrm{percentile}}}_{{27}}}{,}{{\mathrm{describe}}}_{{{\mathrm{percentile}}}_{{36}}}{,}{{\mathrm{describe}}}_{{{\mathrm{percentile}}}_{{45}}}{,}{{\mathrm{describe}}}_{{{\mathrm{percentile}}}_{{54}}}{,}{{\mathrm{describe}}}_{{{\mathrm{percentile}}}_{{63}}}{,}{{\mathrm{describe}}}_{{{\mathrm{percentile}}}_{{72}}}{,}{{\mathrm{describe}}}_{{{\mathrm{percentile}}}_{{81}}}\right]$ (2)
 > $\mathrm{somepercentiles}\left(\mathrm{data}\right)$
 $\left[\frac{{19}}{{2}}{,}\frac{{37}}{{2}}{,}\frac{{55}}{{2}}{,}\frac{{73}}{{2}}{,}\frac{{91}}{{2}}{,}\frac{{109}}{{2}}{,}\frac{{127}}{{2}}{,}\frac{{145}}{{2}}{,}\frac{{163}}{{2}}\right]$ (3)

The 10-90 percentile range is

 > $\mathrm{range_1090}≔x→{\mathrm{describe}}_{{\mathrm{percentile}}_{90}}\left(x\right)-{\mathrm{describe}}_{{\mathrm{percentile}}_{10}}\left(x\right):$
 > $\mathrm{range_1090}\left(\mathrm{data}\right)$
 ${80}$ (4)