 magnetic flux density - Maple Help

Units of Magnetic Flux Density Description

 • Magnetic flux density has the dimension mass per time squared electric current.  The SI derived unit of magnetic flux density is the tesla, which is defined as a volt second per square meter.
 • Maple knows the units of magnetic flux density listed in the following table.

 Name Symbols Context Alternate Spellings Prefixes tesla T SI * teslas SI Atomic SI abtesla abT EMU * abteslas SI stattesla statT ESU * statteslas SI gamma gamma standard gammas SI gauss G standard * SI

 An asterisk ( * ) indicates the default context, an at sign (@) indicates an abbreviation, and under the prefixes column, SI indicates that the unit takes all SI prefixes, IEC indicates that the unit takes IEC prefixes, and SI+ and SI- indicate that the unit takes only positive and negative SI prefixes, respectively.  Refer to a unit in the Units package by indexing the name or symbol with the context, for example, tesla[SI] or G[standard]; or, if the context is indicated as the default, by using only the unit name or symbol, for example, tesla or G.
 The units of magnetic flux density are defined as follows.
 An atomic tesla is defined as $1$ hartree per electron bohr squared, approximately $235051.8032$ teslas.
 An abtesla is defined as $0.0001$ tesla and is energy-equivalent to the unit square root dyne per centimeter ($\frac{\sqrt{\mathrm{dyne}}}{\mathrm{cm}}$).
 A stattesla is defined as $\frac{c}{100}$ teslas where c is the magnitude of the speed of light, and is energy-equivalent to the unit square root dyne second per square centimeter ( $\sqrt{\mathrm{dyne}}\frac{s}{{\mathrm{cm}}^{2}}$ ).
 A gauss is another name for the abtesla.
 A gamma is defined as $1.×{10}^{-9}$ tesla. Examples

 > $\mathrm{convert}\left('\mathrm{tesla}','\mathrm{dimensions}','\mathrm{base}'=\mathrm{true}\right)$
 $\frac{{\mathrm{mass}}}{{\mathrm{electric_current}}{}{{\mathrm{time}}}^{{2}}}$ (1)
 > $\mathrm{convert}\left(1.60217733{10}^{-19},'\mathrm{units}','T','\mathrm{abT}'\right)$
 ${1.602177330}{×}{{10}}^{{-15}}$ (2)
 > $\mathrm{convert}\left(1.60217733{10}^{-19},'\mathrm{units}','T',\frac{\sqrt{'\mathrm{dyne}'}'s'}{{'\mathrm{cm}'}^{2}},'\mathrm{energy}'\right)$
 ${5.344288314}{×}{{10}}^{{-26}}$ (3)
 > $\mathrm{convert}\left(1.60217733{10}^{-19},'\mathrm{units}','T','\mathrm{statT}'\right)$
 ${5.344288314}{×}{{10}}^{{-26}}$ (4)
 > $\mathrm{convert}\left(1.60217733{10}^{-19},'\mathrm{units}','T','{T}_{\mathrm{Atomic}}'\right)$
 ${6.816274696}{×}{{10}}^{{-25}}$ (5)