SummableSpace - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


SumTools[DefiniteSum]

  

SummableSpace

  

construct the summable space

 

Calling Sequence

Parameters

Options

Description

Examples

References

Compatibility

Calling Sequence

SummableSpace[method](reqn, fcn, options)

SummableSpace[method](cert, n, v, options)

Parameters

method

-

(optional) either Gosper or AccurateSummation; if omitted, Gosper is assumed

reqn

-

homogeneous linear recurrence

fcn

-

function name, e.g., v(n)

cert

-

rational function in n

n

-

name; the independent variable

v

-

name; the dependent variable

opts

-

sequence of optional equations of the form keyword=value. Possible keywords are output, range, or primitive.

Options

• 

Each optional argument is of the form keyword = value. The following options are supported.

• 

'output'

  

Specifies the desired form of representations of sequences in the summable space. Possible values:

– 

'RESol'

  

Indicates that the sequences are to be represented by an RESol data structure, of the form RESolreqn,vn,inits, where inits is a set of initial conditions.

– 

'piecewise'

  

Indicates that the sequences are to be represented by an explicit expression depending on n, which in general is a piecewise expression.

  

This argument is ignored in the AccurateSummation case, and an RESol data structure is returned always. In the Gosper case, the default is piecewise.

• 

'range'=a..b

  

Specify an interval R=a..b with integer or infinite bounds (.. by default). If this option is given then it is assumed that vn is determined only for nR and satisfies reqn for all integers n such that both n and n+1 are in R. Moreover, the discrete Newton-Leibniz formula should be valid for any integers n1,n2R.

• 

'primitive'=truefalse

  

If this option is given, the command returns a pair V,T where V represents the summable space of all vn and T represents the space of all primitives un. In the Gosper case, both are returned in the form specified by the option 'output'. In the AccurateSummation case, T is returned as an expression in terms of n and v and is typically a piecewise expression. The default is false.

Description

• 

The command SummableSpace(reqn, fcn) or SummableSpace[Gosper](reqn, fcn) constructs the space of all Gosper definite summable sequences vn satisfying the given homogeneous first order linear recurrence reqn with polynomial coefficients, of the form a1nvn+1+a0nvn=0, for all integers n.

• 

The command SummableSpace[AccurateSummation](reqn, fcn) constructs the space of accurate summation definite summable sequences satisfying a given homogeneous linear recurrence reqn of arbitrary order with polynomial coefficients.

• 

The form in which the result is returned is determined by the output option; see below for details. The output may contain placeholders of the form v0,v1,... representing initial conditions or free parameters of the resulting space.

• 

Instead of the recurrence, a certificate cert can be specified, in which case the recurrence is taken as denomcertvn+1numercertvn=0.

• 

A sequence satisfying a first order linear recurrence is called hypergeometric. A hypergeometric sequence vn is called Gosper indefinite summable if there is another hypergeometric sequence un such that vn=un+1un. The sequence un is called a primitive for vn. A Gosper indefinite summable sequence is called Gosper definite summable if the discrete Newton-Leibniz formula

n=n1n2vn=un2+1un1

  

is valid for any integers n1,n2.

• 

A sequence vn satisfying a homogeneous linear recurrence with polynomial coefficients of order d is called accurate summation indefinite summable if there is a sequence un such that vn=un+1un and un satisfies another homogeneous linear recurrence if the same order d. The sequence un is called a primitive for vn. An accurate summation indefinite summable sequence is called accurate summation definite summable if the discrete Newton-Leibniz formula is valid for any integers n1,n2.

• 

The primitive un is a linear combination of vn,vn+1,...,vn+d1 with rational function coefficients, where d is the order of reqn, with the possible exception of finitely many values n. In particular, in the Gosper case the primitive is a rational function multiple of vn.

• 

If no nonzero summable sequences for reqn exist, then the command returns FAIL.

Examples

withSumToolsDefiniteSum:

reckvk+1k+12vk=0

reckvk+1k+12vk=0

(1)

SummableSpacerec,vk,output=RESol

RESolk22k1vk+kvk+1=0,vk,v−1=v−1,v0=0,v1=0,INFO

(2)

V,TSummableSpaceGosperrec,vk,output=piecewise,primitive

V,Tv−1−1kkΓkk−100k,v−1−1kΓkk−100k

(3)

addevalV,k=i,i=100..100=evalT,k=101evalT,k=100

v−1933262154439441526816992388562667004907159682643816214685929638952175999932299156089414639761565182862536979208272237582511852109168640000000000000000000000=v−1933262154439441526816992388562667004907159682643816214685929638952175999932299156089414639761565182862536979208272237582511852109168640000000000000000000000

(4)

SummableSpaceGosperrec,vk,range=0..

v1Γk+1k

(5)

certkk+2

certkk+2

(6)

SummableSpaceGospercert,k,v

0k−2v−1k=−1v−1k=001k

(7)

SummableSpaceGospercert,k,v,range=1..

2v1k+1k

(8)

SummableSpaceGosper2k24k9vk+12k3k1k8vk=0,vk

0k−22v1k=−13v1k=0v1k=18v3Γk32k2k9πΓk+22k

(9)

Lk3k2k+1vk+2k3k22k1vk+1k22vk=0

Lk3k2k+1vk+2k3k22k1vk+1k22vk=0

(10)

SummableSpaceAccurateSummationL,vk,primitive

RESolk2+4k4vk+k3+5k25k3vk+1+k34k2+k+6vk+2=0,vk,v2=v2,v3=0,v4=v4,v5=v44,INFO,vkk3+kvk+1k20k=3vkk3+kvk+14k

(11)

SummableSpaceAccurateSummationL,vk,range=4..,primitive

RESolk2+4k4vk+k3+5k25k3vk+1+k34k2+k+6vk+2=0,vk,v4=v4,v5=v5,INFO,vkk3+kvk+1

(12)

References

  

S.A. Abramov. "On the summation of P-recursive sequences." Proc. of ISSAC'06, (2006): 17-22.

Compatibility

• 

The SumTools[DefiniteSum][SummableSpace] command was introduced in Maple 15.

• 

For more information on Maple 15 changes, see Updates in Maple 15.

See Also

OreTools[MathOperations][AccurateIntegration]

SumTools[Hypergeometric][BottomSequence]

SumTools[Hypergeometric][Gosper]

SumTools[IndefiniteSum][AccurateSummation]