Example 4-1-1 - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

# Online Help

###### All Products    Maple    MapleSim



Chapter 4: Partial Differentiation



Section 4.1: First-Order Partial Derivatives



Example 4.1.1



 If  and $\left(a,b\right)=\left(\mathrm{π}/3,\mathrm{π}/6\right)$, obtain ${f}_{x}$ and ${f}_{y}$ both at $\left(x,y\right)$ and at $\left(a,b\right)$.



Solution

Maple Solution - Interactive



Calculating partial derivatives and evaluating them at a point can be done with just the Context Panel system.

Context Panel

 • Control-drag the expression for $f$ and press the Enter key.
 • Context Panel: Differentiate≻With Respect To≻$x$ (or $y$)
 • Context Panel: Evaluate at a Point (see Figure 4.1.1(a)).

  Figure 4.1.1(a)   Evaluate at $\left(a,b\right)$

${f}_{x}$

${f}_{y}$

${x}{}{\mathrm{sin}}{}\left({y}\right){+}{y}{}{\mathrm{sin}}{}\left({x}\right)$

$\stackrel{\text{differentiate w.r.t. x}}{\to }$

${\mathrm{sin}}{}\left({y}\right){+}{y}{}{\mathrm{cos}}{}\left({x}\right)$

$\stackrel{\text{evaluate at point}}{\to }$

$\frac{{1}}{{2}}{+}\frac{{1}}{{12}}{}{\mathrm{π}}$

${x}{}{\mathrm{sin}}{}\left({y}\right){+}{y}{}{\mathrm{sin}}{}\left({x}\right)$

$\stackrel{\text{differentiate w.r.t. y}}{\to }$

${x}{}{\mathrm{cos}}{}\left({y}\right){+}{\mathrm{sin}}{}\left({x}\right)$

$\stackrel{\text{evaluate at point}}{\to }$

$\frac{{1}}{{6}}{}{\mathrm{π}}{}\sqrt{{3}}{+}\frac{{1}}{{2}}{}\sqrt{{3}}$



Defining $f$ as an expression allows its partial derivatives to be calculated and evaluated at a point via some of the palette templates, allowing for a more natural notation to be displayed.

Define $f$ as an expression

 • Control-drag the expression for $f$.
 • Context Panel: Assign to a Name≻$f$

$\stackrel{\text{assign to a name}}{\to }$${f}$

Obtain ${f}_{x}\left(x,y\right)$ and ${f}_{y}\left(x,y\right)$

 • Calculus palette: First-partial operator
 • Context Panel: Evaluate and Display Inline

= ${\mathrm{sin}}{}\left({y}\right){+}{y}{}{\mathrm{cos}}{}\left({x}\right)$

 • Calculus palette: First-partial operator
 • Context Panel: Evaluate and Display Inline

= ${x}{}{\mathrm{cos}}{}\left({y}\right){+}{\mathrm{sin}}{}\left({x}\right)$

Obtain ${f}_{x}\left(a,b\right)$ and ${f}_{y}\left(a,b\right)$

 • Expression palette: Evaluation template Calculus palette: First-partial operator
 • Context Panel: Evaluate and Display Inline

= $\frac{{1}}{{2}}{+}\frac{{1}}{{12}}{}{\mathrm{π}}$

 • Expression palette: Evaluation template Calculus palette: First-partial operator
 • Context Panel: Evaluate and Display Inline

= $\frac{{1}}{{6}}{}{\mathrm{π}}{}\sqrt{{3}}{+}\frac{{1}}{{2}}{}\sqrt{{3}}$



A very high degree of notational faithfulness can be obtained by defining subscripts as operators.

 • In the present context, the expression for $f$ is already assigned to the name $f$. Were this not so, the expression would have to be assigned to a name, preferably, $f$.

Define the functions  ${f}_{x}$ and ${f}_{y}$

 • Write the symbols ${f}_{x}$ and ${f}_{y}$ as Atomic Identifiers.
 • Calculus palette: First-partial operator
 • Context Panel: Assign Function

${f}_{x}$

${f}_{y}$

$\stackrel{\text{assign as function}}{\to }$$\mathrm{f__x}$

$\stackrel{\text{assign as function}}{\to }$$\mathrm{f__y}$

Obtain ${f}_{x}\left(x,y\right)$ and ${f}_{y}\left(x,y\right)$

$\mathrm{f__x}\left(x,y\right)$ = ${\mathrm{sin}}{}\left({y}\right){+}{y}{}{\mathrm{cos}}{}\left({x}\right)$

$\mathrm{f__y}\left(x,y\right)$ = ${x}{}{\mathrm{cos}}{}\left({y}\right){+}{\mathrm{sin}}{}\left({x}\right)$

Obtain ${f}_{x}\left(a,b\right)$ and ${f}_{y}\left(a,b\right)$

$\mathrm{f__x}\left(\mathrm{π}/3,\mathrm{π}/6\right)$ = $\frac{{1}}{{2}}{+}\frac{{1}}{{12}}{}{\mathrm{π}}$

$\mathrm{f__y}\left(\mathrm{π}/3,\mathrm{π}/6\right)$ = $\frac{{1}}{{6}}{}{\mathrm{π}}{}\sqrt{{3}}{+}\frac{{1}}{{2}}{}\sqrt{{3}}$







© Maplesoft, a division of Waterloo Maple Inc., 2023. All rights reserved. This product is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.



For more information on Maplesoft products and services, visit www.maplesoft.com