Norm - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


Student[LinearAlgebra]

  

Norm

  

compute the p-norm of a Matrix or Vector

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

Norm(A, p, options)

Parameters

A

-

Matrix or Vector

p

-

(optional) non-negative number, infinity, Euclidean, or Frobenius; norm selector that is dependent upon A

options

-

(optional) parameters; for a complete list, see LinearAlgebra[Norm]

Description

• 

The Norm(A) command computes the Euclidean (2)-norm of A.

  

Note: The default norm in the top-level LinearAlgebra package is the infinity norm, as that norm is faster to compute for Matrices.

  

The allowable values for the norm-selector parameter, p, depend on whether A is a Vector or a Matrix.

  

 

  

Vector Norms

• 

If V is a Vector and p is included in the calling sequence, p must be one of a non-negative number, infinity, Frobenius, or Euclidean.

  

The p-norm of a Vector V when 1p< is addVip&comma;i=1..DimensionV1p.

  

The infinity-norm of  Vector V is maxseqVi&comma;i=1..DimensionV.

  

Maple implements Vector norms for all 0p.  For 0<p<1 the final pth root computation is not done, that is, the calculation is addVip&comma;i=1..DimensionV. This defines a metric on Rn, but the pth root is not a norm and the form computed by Norm in such cases is more useful.  The limiting case of p=0 returns the number of nonzero elements of V (this is a floating-point number  if p or any element of V is a floating-point number).

  

For Vectors, the 2-norm can also be specified as either Euclidean or  Frobenius.

  

 

  

Matrix Norms

• 

If A is a Matrix and p is included in the calling sequence, p must be one of 1, 2, infinity, Frobenius, or Euclidean.

  

The p-norm of a Matrix A is max(Norm(A . V, p)), where the maximum is calculated over all Vectors V with Norm(V, p) = 1.  Maple implements only Norm(A, p) for p=1,2, and the special case p=Frobenius (which is not actually a Matrix norm; the Matrix A is treated as a "folded up" Vector). These norms are defined as follows.

  

Norm(A, 1) = max(seq(Norm(A[1..-1, j], 1), j = 1 .. ColumnDimension(A)))

  

Norm(A, infinity) = max(seq(Norm(A[i, 1..-1], 1), i = 1 .. RowDimension(A)))

  

Norm(A, 2) = sqrt(max(seq(Eigenvalues(A . A^%T)[i], i = 1 .. RowDimension(A))))

  

Norm(A, Frobenius) = sqrt(add(add((A[i,j]^2), j = 1 .. ColumnDimension(A)), i = 1 .. RowDimension(A)))

  

For Matrices, the 2-norm can also be specified as Euclidean.

Examples

withStudentLinearAlgebra&colon;

A1&comma;1&comma;0|0&comma;1&comma;1|1&comma;0&comma;1

A101−110011

(1)

NormA&comma;2

3

(2)

B10&comma;0&comma;0|0&comma;9&comma;12|2&comma;4&comma;1

B10020940121

(3)

NormB&comma;1

10

(4)

h3|4

h34

(5)

hNormh&comma;1

3747

(6)

va&comma;b&comma;c

vabc

(7)

Normv&comma;

maxa&comma;b&comma;c

(8)

See Also

LinearAlgebra[Norm]

Student[LinearAlgebra]

Student[LinearAlgebra][Normalize]

Student[LinearAlgebra][Operators]