Critical Points - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


Student[Calculus1]

  

CriticalPoints

  

find the critical points of an expression

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

CriticalPoints(f(x), x, opts)

CriticalPoints(f(x), x = a..b, opts)

CriticalPoints(f(x), a..b, opts)

Parameters

f(x)

-

algebraic expression in variable 'x'

x

-

name; specify the independent variable

a, b

-

algebraic expressions; specify restricted interval for critical points

opts

-

equation(s) of the form numeric=true or false; specify computation options

Description

• 

The CriticalPoints(f(x), x) command returns all critical points of f(x) as a list of values.

• 

The CriticalPoints(f(x), x = a..b) command returns all critical points of f(x) in the interval [a,b] as a list of values.

• 

If the independent variable can be uniquely determined from the expression, the parameter x need not be included in the calling sequence.

• 

A critical point is defined as any point at which the derivative is either zero or does not exist.

• 

If the expression has an infinite number of critical points, a warning message and sample critical points are returned.

• 

The opts argument can contain the following equation that sets computation options.

  

 

  

numeric = true or false

  

Whether to use numeric methods (using floating-point computations) to find the critical points of the expression. If this option is set to true, the points a and b must be finite and are set to −10 and 10 if they are not provided. By default, the value is false.

Examples

withStudentCalculus1:

CriticalPoints3x2x

16

(1)

CriticalPoints3x55x3+3,x

−1,0,1

(2)

CriticalPoints2x3+5x24x

−2,13

(3)

CriticalPoints2x3+5x24x,x=0..1

13

(4)

CriticalPointsx23x+1x,x

−1,1

(5)

CriticalPointsx23x+1x,x,numeric

−1.000000000,1.000000000

(6)

See Also

Student

Student[Calculus1]

Student[Calculus1][Asymptotes]

Student[Calculus1][CurveAnalysisTutor]

Student[Calculus1][ExtremePoints]

Student[Calculus1][FunctionChart]

Student[Calculus1][InflectionPoints]

Student[Calculus1][Roots]