Rank - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Statistics

 Rank
 rank data items according to their numeric values

 Calling Sequence Rank(X, options)

Parameters

 X - options - (optional) equation(s) of the form option=value where option is one of order or output; specify options for the Rank function

Description

 • For a data set X of size n, the Rank command ranks the elements of X according to their floating-point values.
 • By default, an array of ranks is returned, that is an array of distinct integers between 1 and n. By default the elements of X are ranks in the ascending order. Note that if i is different from j then ${\mathrm{data}}_{i}$ and ${\mathrm{data}}_{j}$ will receive distinct ranks even if data[i] = data[j].
 • The first parameter X is the data set - given as e.g. a Vector.

Options

 The options argument can contain one or more of the options shown below.
 • order=ascending or descending -- Indicate whether the elements of X should be ranked in the ascending or descending order. The default value is order=ascending.
 • output=table -- By default (output=rtable) different elements of X receive different ranks even if the two elements have the same numeric value. If this option is set to output=table then the elements of X will be ranked according to their position in the sorted sample with all multiple occurrences removed.

Notes

 • Each element of X can be any Maple expression, but this expression must be able to be evaluated to a floating-point number. Failure to evaluate to do so will generate an exception.
 • If the output option is set to output=table all elements in X must be of type numeric.
 • The Rank command leaves the original data set X unchanged.

Examples

 > $\mathrm{with}\left(\mathrm{Statistics}\right):$
 > $A≔\mathrm{Array}\left(\left[0.5,0.7,0.5,0.1,0.3,0.1,0.2,0.1\right]\right)$
 ${A}{≔}\left[\begin{array}{cccccccc}{0.5}& {0.7}& {0.5}& {0.1}& {0.3}& {0.1}& {0.2}& {0.1}\end{array}\right]$ (1)

Rank the elements of A in the ascending order.

 > $R≔\mathrm{Rank}\left(A\right)$
 ${R}{≔}\left[\begin{array}{cccccccc}{6}& {8}& {7}& {1}& {5}& {2}& {4}& {3}\end{array}\right]$ (2)

Reorder the elements of A according to their ranks.

 > $B≔\mathrm{OrderByRank}\left(A,R\right)$
 ${B}{≔}\left[\begin{array}{cccccccc}{0.1}& {0.1}& {0.1}& {0.2}& {0.3}& {0.5}& {0.5}& {0.7}\end{array}\right]$ (3)

Reorder the elements of A in the descending order.

 > $Q≔\mathrm{Rank}\left(A,\mathrm{order}=\mathrm{descending}\right)$
 ${Q}{≔}\left[\begin{array}{cccccccc}{2}& {1}& {3}& {6}& {4}& {7}& {5}& {8}\end{array}\right]$ (4)
 > $C≔\mathrm{OrderByRank}\left(A,Q\right)$
 ${C}{≔}\left[\begin{array}{cccccccc}{0.7}& {0.5}& {0.5}& {0.3}& {0.2}& {0.1}& {0.1}& {0.1}\end{array}\right]$ (5)

Build the ranks table.

 > $T≔\mathrm{Rank}\left(A,\mathrm{output}=\mathrm{table}\right)$
 ${T}{≔}{table}{}\left(\left[{0.3}{=}{3}{,}{0.7}{=}{5}{,}{0.1}{=}{1}{,}{0.5}{=}{4}{,}{0.2}{=}{2}\right]\right)$ (6)
 > $A\left[4\right],T\left[A\left[4\right]\right]$
 ${0.1}{,}{1}$ (7)
 > $A\left[1\right],T\left[A\left[1\right]\right]$
 ${0.5}{,}{4}$ (8)