Thermodynamics - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

QuantumChemistry

 Thermodynamics
 compute the thermodynamic properties of a molecule

 Calling Sequence Thermodynamics(molecule, method, options)

Parameters

 molecule - list of lists; each list has 4 elements, the string of an atom's symbol and atom's x, y, and z coordinates method - name/procedure where name is one of 'HartreeFock', 'DensityFunctional', 'RDMFunctional', options - (optional) equation(s) of the form option = value where option is one of temperature, symmetry_number, or any valid option of the chosen method

Description

 • Thermodynamics computes the thermodynamic properties of a molecule such as energy, enthalpy, entropy, free energy, heat capacity, electronic energy, zero-point energy (ZPE) and rotational temperatures (theta[A], theta[B], theta[C]).
 • The optional temperature keyword can be used to set the temperature in K.  The default is 298.15 K.
 • The optional symmetry_number keyword can be used to set the symmetry number of the molecule.  The default is 1.

Outputs

The table of following contents:

 ${\mathrm{energy}}$ - float -- energy in J/mol - float -- enthalpy in J/mol ${\mathrm{entropy}}$ - float -- entropy in J/(mol K) ${\mathrm{free_energy}}$ - float -- free energy of the system in J/mol ${\mathrm{heat_capacity}}$ - float -- heat capacity of the system in J/(mol K) ${\mathrm{electronic_energy}}$ - float -- electronic energy in J/mol ${\mathrm{zpe}}$ - float -- zero-point energy in J/mol - float -- rotational temperature (in K) for principle axis A - float -- rotational temperature (in K) for principle axis B ${\mathrm{\theta }}\left[{C}\right]$ - float -- rotational temperature (in K) for principle axis C

Examples

 > $\mathrm{with}\left(\mathrm{QuantumChemistry}\right):$

Define the geometry of the molecule hydrogen fluoride

 >

Optimize the geometry of the molecule

 ${\mathrm{molecule}}{≔}\left[\left[{"H"}{,}{0}{,}{0}{,}{-0.55000000}\right]{,}\left[{"F"}{,}{0}{,}{0}{,}{0.55000000}\right]\right]$ (1)
 >
 > $\mathrm{molecule2};$
 $\left[\left[{"H"}{,}{0}{,}{0}{,}{-0.55000000}\right]{,}\left[{"F"}{,}{-1.20349177}{}{{10}}^{{-11}}{,}{6.25718917}{}{{10}}^{{-11}}{,}{0.40546311}\right]\right]$ (2)

Using the command Thermodynamics, we can compute the molecule's thermodynamic properties

 >
 ${\mathrm{thermo}}{≔}{table}{}\left(\left[{\mathrm{free_energy}}{=}{-}{2.58849971}{}{{10}}^{{8}}{}⟦\frac{{J}}{{\mathrm{mol}}}⟧{,}{\mathrm{entropy}}{=}{365.61292814}{}⟦\frac{{J}}{{\mathrm{mol}}{}{K}}⟧{,}{\mathrm{electronic_energy}}{=}{-}{2.58802975}{}{{10}}^{{8}}{}⟦\frac{{J}}{{\mathrm{mol}}}⟧{,}{\mathrm{zpe}}{=}{26667.73973739}{}⟦\frac{{J}}{{\mathrm{mol}}}⟧{,}{\mathrm{heat_capacity}}{=}{20.78615124}{}⟦\frac{{J}}{{\mathrm{mol}}{}{K}}⟧{,}{{\mathrm{\theta }}}_{{B}}{=}{27.75734190}{}⟦{K}⟧{,}{\mathrm{enthalpy}}{=}{-}{2.58740963}{}{{10}}^{{8}}{}⟦\frac{{J}}{{\mathrm{mol}}}⟧{,}{{\mathrm{\theta }}}_{{C}}{=}{27.75734190}{}⟦{K}⟧{,}{\mathrm{energy}}{=}{-}{2.58743442}{}{{10}}^{{8}}{}⟦\frac{{J}}{{\mathrm{mol}}}⟧\right]\right)$ (3)
 >